Communication Engineering Systems

Introduction to Communication Systems (1)

Assoc.Prof.Piya Kovintavewat, Ph.D.

Data Storage Technology Research Center Nakhon Pathom Rajabhat University http://home.npru.ac.th/piya

"All things are difficult before they are easy"

โปรแกรมวิศวกรรมโทรคมนาคม

Course Information

☐ Instructor: Assoc. Prof. Piya Kovintavewat, Ph.D.

■ Email: piya@npru.ac.th

■ Office Hours: 13:00 – 16:00 pm., Monday.

☐ Location: ETB

 \square Class time: 8:30 – 11:30 pm., Tuesday.

☐ Class Homepage: http://home.npru.ac.th/piya

□ Book: หลักการไฟฟ้าสื่อสาร (ลัญฉกร วุฒิสิทธิกุลกิจ, 2554)

☐ Useful URL: http://home.npru.ac.th/piya/webscilab

☐ Grading: HWs 10% Attendant 10%

Quiz I 20% Quiz II 20% Final 40%

Course Syllabus

- □ Course description: พื้นฐานสัญญาณและระบบ สเปกตรัมของสัญญาณ การ ประยุกต์ใช้อนุกรมฟูเรียร์และการแปลงฟูเรียร์ การกล้ำสัญญาณแบบแอนะล็อก เชิง แอมพลิจูด เชิงความถี่ เชิงเฟส สัญญาณรบกวนในระบบสื่อสารแอนะล็อก การกล้ำ สัญญาณแถบฐาน ทฤษฎีการชักตัวอย่างในควิสต์และการแจงหน่วย การกล้ำสัญญาณ พัลส์แบบต่างๆ การกล้ำรหัสพัลส์ การกล้ำสัญญาณแบบเดลตา สหสัญญาณ สห สัญญาณแบบแบ่งเวลา พื้นฐานของสายส่ง การแพร่กระจายคลื่นวิทยุ องค์ประกอบของ ไมโครเวฟ การสื่อสารผ่านดาวเทียม และการสื่อสารทางแสง
- □ Q&A Session: Should one has any question or help on the homework, ask me after class or email me.
- Homework: Be distributed weekly. HW is due <u>at the beginning of the next class.</u> No late HW is accepted.
- Absence of Exams: Please tell me in advance if you will be absent, only legitimate reasons are noticed. In case of sickness, bring proof together with the doctor's phone number

รศ.ดร.ปิยะ โควินท์ทวีวัฒน์

โปรแกรมวิศวกรรมโทรคมนาคม

3

Grading

- $\Box A > 80$
- $\Box 75 \le B + < 80$
- $\square 70 \le B < 75$
- $\square 65 \le C + < 70$
- \square 55 \leq C \leq 65
- $\Box 47 < D + < 55$
- $\Box 40 < D < 47$
- $\Box E < 40$

Outline

□ Variety of Today's Communication Systems
□ Design Challenges
□ Basic of Communication Systems
□ Fundamental Limitation
□ Bandwidth
□ Performance Metric
□ Data Rate Limit

รศ.ดร.ปิยะ โควินท์ทวีวัฒน์

▶ โปรแกรมวิศวกรรมโทรคมนาคม ◀

5

Communication Systems

- ☐ Convey information from one place (source) to another place (destination)
- ☐ Information:
 - Voice, data, video, music, email, web pages, etc.

☐ Introduction to Modulation & Coding

☐ Goal: To reproduce an acceptable replica of the source message at the destination

Today's Communication Systems

- ☐ Radio and TV broadcasting
- ☐ Public Switched Telephone Network (voice, fax, modem)
- ☐ Cellular Phones
- ☐ Computer networks (LANs, WANs, and the Internet)
- ☐ Satellite systems (pagers, voice/data, movie broadcasts)
- ☐ Bluetooth, WiMAX, UWB, VLC, etc.

▶ โปรแกรมวิศวกรรมโทรคมนาคม ◀

7

PSTN Design

- ☐ Local exchange
 - Handle local calls
 - Route long distance calls over high-speed lines
- ☐ Circuit switched network suitable for voice (56 kbps)
- ☐ Faxes and modems modulate data for voice channel
- □ DSL uses advanced modulation to get 1.5 Mbps

Cellular System Basics

- ☐ Geographic region divided into cells (in hexagon shape)
- ☐ Frequencies/timeslots/codes reused at spatially-separated locations (analog systems use FD, digital use TD or CD)
- ☐ Co-channel interference between same color cells.
- ☐ Handoff and control coordinated through cell base stations

รศ.ดร.ปิยะ โควินท์ทวีวัฒน์

โปรแกรมวิศวกรรมโทรคมนาคม

9

Cell Phone Backbone Network

Local Area Networks (LANs)

- ☐ LANs connect "local" computers
- ☐ Breaks data into packets
- ☐ Packet switching (no dedicated channels)
- ☐ Proprietary protocols (access,routing, etc.)

โปรแกรมวิศวกรรมโทรคมนาคม

11

Wireless Local Area Networks (WLANs

- ☐ WLANs connect "local" computers (100m range)
- ☐ Breaks data into packets
- ☐ Channel access is shared (random access)
- ☐ Backbone Internet provides best-effort service

Wide Area Networks - The Internet

- ☐ Many LANs and MANs bridged together
- ☐ Universal protocol: TCP/IP (packet based).
- ☐ Guaranteed rates or delays cannot be provided.
- ☐ Hard to support user mobility.
- ☐ Highly scalable and flexible topology

โปรแกรมวิศวกรรมโทรคมนาคม

13

Satellite Systems

- ☐ Cover very large areas
- ☐ Different orbit heights
 - GEOs (39000 Km) versus LEOs (2000 Km)
- ☐ Applications:
 - Radio (XM, DAB)
 - Movie (SatTV) broadcasting
 - Internet
 - Etc.

Paging Systems

- ☐ Broad coverage for short messaging
- ☐ Message broadcast from all base stations
- ☐ Simple terminals
- ☐ Optimized for 1-way transmission
- ☐ Answer-back hard
- ☐ Overtaken by cellular

รศ.ดร.ปิยะ โควินท์ทวีวัฒน์

โปรแกรมวิศวกรรมโทรคมนาคม

15

Bluetooth

- ☐ Cable replacement for electronic devices
 - Cell phones
 - Laptops
 - PDAs
 - etc.
- ☐ Short range connection (10-100 m)

Medium and Electromagnetic Spectra

โปรแกรมวิศวกรรมโทรคมนาคม

17

Future Systems

Ubiquitous Communication Among People and Devices

Design Challenges

- ☐ Hardware Design
 - Precise components
 - Small, lightweight, low power
 - Cheap
 - High frequency operation
- ☐ System Design
 - Converting and transferring information
 - High data rates
 - Robust to noise and interference
 - Supports many users
- ☐ Network Design
 - Connectivity and high speed
 - Energy and delay constraints

รศ.ดร.ปิยะ โควินท์ทวีวัฒห์

▶ โปรแกรมวิศวกรรมโทรคมนาคม ◀

19

Analog and Digital Signals

- ☐ Analog signals
 - Value varies continuously with time
- ☐ Digital signals
 - Value limited to a finite set
- ☐ Binary signals
 - Has at most 2 values
 - Used to represent bit values
 - Bit time T needed to send 1 bit
 - Data rate R=1/T bits per second (bps)

Information Representation

- ☐ Communication systems convert information into a format appropriate for the transmission medium.
 - Channels convey electromagnetic waves (signals).
- ☐ Analog communication systems convert (modulate) analog signals into modulated (analog) signals
- □ **Digital communication** systems convert information in the form of bits into digital signals
 - Computers naturally generate information as bits
 - Analog signals can be converted into bits by quantizing and digitizing.

🕨 โปรแกรมวิศวกรรมโทรคมนาคม ◀

21

Block Diagram of Communication System

- ☐ Most communication systems have input and output transducers.
- ☐ Input transducer ⇒ convert the message to an electrical signal, e.g. microphone.
- Output transducer ⇒ convert the output signal to the desired message form, e.g., loudspeaker.

Block Diagram of Communication System II

- Transmitter processes the input signal to produce the transmitted signal suited to the characteristics of the transmission channel.
- ☐ Transmission channel is the electrical medium that bridges the distance from source to destination.
- ☐ Receiver operates on the output signal before sending to the destination.

โปรแกรมวิศวกรรมโทรคมนาคม

23

Disturbances

- Noise refers to random and unpredictable electrical signals produced by natural (cannot be completely eliminated), e.g., thermal noise.
- ☐ Interference is contamination by extraneous signal from human sources (occurs most often in radio systems).
- □ Distortion is waveform perturbation caused by imperfect response of the system to the desired signal itself (can be relieved with the help of special filters called *equalizer*.
- □ Normally, we measure noise relative to an information signal in terms of signal-to-noise ratio (SNR).

Fundamental Limitation

- ☐ Two constraints when designing a system
 - Technological problem
 - o Some can be solved in theory but some cannot
 - Fundamental physical limitation
 - Ultimately dictate what can or cannot be accomplished regardless of the technological problems
- ☐ Fundamental limitations of information transmission by electrical means are noise and bandwidth.

▶ โปรแกรมวิศวกรรมโทรคมนาคม ◀

25

Bandwidth

- ☐ A measure of speed
 - If the signal changes rapidly, its frequency content or **spectrum** extends over a wide range ⇒ implies the signal has large bandwidth (BW).
- ☐ Every communication system has a finite BW that limits the rate of signal variation.
- ☐ If channel BW << signal BW \Rightarrow Severe distortion (under real-time condition).
 - Ex. For a digital signal with r symbols/sec $\Rightarrow BW \ge r/2$ to avoid severe distortion.

Performance Metrics

- ☐ Analog Communication Systems
 - Metric is fidelity
 - Want $m(t) = \hat{m}(t)$
- ☐ Digital Communication Systems
 - Metrics are data rate (R bps) and probability of bit error $P_b = p(\hat{b} \neq b)$
 - Without noise, never make bit errors
 - With noise, P_b depends on signal and noise power, data rate, and channel characteristics.
- ☐ Performance metric for analog systems is fidelity, for digital it is rate and error probability.

รศ.ดร.ปิยะ โควินท์ทวีวัฒน์

▶ โปรแกรมวิศวกรรมโทรคมนาคม ◀

27

Data Rate Limits

- □ Data rate *R* limited by signal power, noise power, distortion, and bit error probability
- \square Without distortion or noise, can have infinite data rate with $P_b = 0$.
- ☐ Shannon capacity defines *maximum* possible data rate for systems with noise and distortion
 - Rate achieved with bit error probability close to zero
 - In white Gaussian noise channels, $C = BW \log(1+SNR)$, which is an *upper limit* on the performance of a communication system for a given BW and SNR.
 - Does not show how to design real systems
- \Box C = 32 Kbps for Phone channel (1.5 Mbps with DSL)

Modulation

Modulation	is an op	eration	performe	d at the	transmitter	to	achieve
efficient and	d reliable	e inform	nation tra	ismissic	on.		

- ☐ Modulation involves two waveforms:
 - A modulating signal \Rightarrow a message
 - A carrier \Rightarrow suit the particular application
- ☐ A modulator systematically alters the carrier wave in correspondence with the variations of the modulating signal.
- ☐ The resulting modulated signal "carriers" the message information.
- ☐ Purpose ⇒ to generate a modulated signal suited to the channel characteristics.

โปรแกรมวิศวกรรมโทรคมนาคม

29

Coding

- □ Coding is a symbol-processing operation for improved communication when the information is digital or can be approximated in the form of discrete symbols.
- \square Binary symbol \Rightarrow correspond to the binary digits 0 and 1
- \square M-ary symbols when coded by binary coding will require at least K binary digits, where

$$K = \log_2(M)$$

Coding (Cont.)

- \square If the source produces r symbols/sec
 - Binary code will have *Kr* digits/sec
 - The transmission BW requirement is *K* times the BW of an uncoded signal
- ☐ In summary, binary coding provides two advantages:
 - Less complicated hardware
 - Noise has less effect on a binary signal

โปรแกรมวิศวกรรมโทรคมนาคม

31

Coding (Cont.)

- □ Suppose we have a binary data source and a communication system with adequate SNR and limited BW.
- □ Encoding blocks of K binary digits as M-ary symbols reduces the signal BW by a factor of $K = \log_2(M)$, thus allowing an increased data rate on a band-limited channel.
- ☐ This technique refers to as source coding.