
A New Anti-Collision Based on A-Priori Information

Sarawut Makwimanloy1, Piya Kovintavewat2, Urachada Ketprom3, Charturong Tantibundhit4, Chaichana Mitrpant5
1,4 Electrical and Computer Engineering Department, Thammasat University, Thailand

2 RFID Technology and Applications Research Unit, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
3,5 RFID Program, National Electronics and Computer Technology Center (NECTEC), Thailand

Email: 1makwimanloy@hotmail.com,2piya@npru.ac.th,3urachada.ketprom@nectec.or.th,
4tchartur@engr.tu.ac.th,5chaichana.mitrpant@nectec.or.th

Abstract— A collision occurs when more than two tags present in
the reader’s field of a radio frequency identification (RFID)
system. Many anti-collision algorithms (e.g., Binary Tree, FSA,
and DFSA) have been employed in ISO and EPC standards to
prevent such a collision. This paper proposes a new anti-collision
algorithm based on a-priori information about the manufacturer
code. Results indicate that the proposed anti-collision algorithm
performs better than the existing ones in terms of the number of
used time slots (the less the used time slot, the faster the
algorithm). Specifically, the proposed algorithm uses less
number of slots than the existing ones, approximately 50%.

I. INTRODUCTION
Radio-frequency identification (RFID) system has been

introduced to uniquely identify the object of interest. The
RFID system consists of a reader and a tag, which
communicate between each other via radio frequency waves.
Recently, the RFID system has been employed in a variety of
applications, such as, transport systems, ticketing, access
control, animal identification, and so forth.

When more than one tag in the reader’s field
communicates with the reader at the same time, a collision
will occur resulting in the failure of that communication. In
this case, each tag has to resend all information to the reader.
To prevent this problem, an anti-collision algorithm must be
used. Based on the International Standards Organization
(ISO) and EPCglobal (EPC), there are 3 types of anti-collision
algorithms, namely, Binary Tree (BT) [1, 2], Framed Slotted
ALOHA (FSA) [1], and Dynamic Framed Slotted ALOHA
(DFSA) [1, 3] algorithms.

Many improved anti-collision algorithms have recently
been proposed in the literature. For example, reference [1]
presents the analysis and simulation of several RFID anti-
collision algorithms and partitioning of tags for near-optimum
RFID anti-collision performance. Partitioning technique
enabling a faster accurate estimation on the number of
contending tags, which yields much higher throughput against
previous non-partitioning approaches, was proposed in [4].
However, for a special case where a-priori information about
the manufacturer code is known, there is no anti-collision
algorithm that exploits such information so as to improve its
performance. In this paper, we propose a new anti-collision
algorithm based on a-priori information, which shows better

performance in terms of the number of used time slots (or
speed) than other anti-collision algorithms. Specifically, the
less the number of used time slots, the faster the algorithm.
The performance comparison of different anti-collision
algorithms used in ISO and EPC standards is also provided to
serve as a guideline for users to decide which algorithm
should be utilized for a given condition.

The rest of this paper is organized as follows: Section II
briefly describes the anti-collision algorithms used in ISO and
EPC standards. A new anti-collision algorithm based on a-
priori information is explained in Section III. Section IV
compares the performance of different anti-collision
algorithms. Finally, Section V concludes this paper.

II. EXISTING ANTI-COLLISION ALGORITHMS
This section briefly describes how the anti-collision
algorithms (i.e., BT, FSA, and DFSA) work.

A. Binary Tree Algorithm
A Binary Tree (BT) algorithm is employed in Type B of

ISO 18000-6 and Class 1 of EPC [2]. It basically divides tags
into two groups based on the most significant bit (MSB) of the
tag’s ID number, denoted as MSBID, which consists only of
bits “0” and “1”. To search a tag, a dividing process continues
adding up the number “0” and “1” into each group, until
finding a tag [1, 5, 6]. Note that we consider only the case
where the tags do not support a random generator in hardware
for group selection [7], meaning that the BT algorithm
operates on the tag’s identification (ID) numbers.

Fig. 1 shows how the BT algorithm works. Suppose there
are 3 tags in the reader’s field, namely, “011,” “101,” and
“110,” where the first digit is MSB. To obtain all tags, the
reader begins a search by sending bit “0” (step 1) to all tags
and waits for the response. There is one response sent to the
reader because there is only one tag beginning with bit “0.”
Now, the reader recognizes Tag 1. Next, the reader sends bit
“1” (step 2) to the other two tags, i.e., “101” and “110”. In
this case, a collision occurs because two tags respond back at
the same time. Therefore, the reader sends another bit “0”
(step 3) to these two tags. In this time, the reader can
recognize Tag 2 because the reader receives only one
response. Then, the reader sends another bit “1” (step 4) to
the remaining tag, which results in only one response from

 Fig. 1. How Binary Tree algorithm works.

Tag 3 sent to the reader. This means there is no other tags in
the reader’s field, which implies the end process of the BT
algorithm.

To compare the performance of different anti-collision
algorithms, we use the required total number of commands
sent from the reader to the tag as a criterion. Each command
is referred to as one time slot (or, in short, slot). Assuming
that each slot uses the same processing time, the algorithm
that requires a large number of slots will operate slow. For
example, in Fig. 1, the total number of slots that the reader
requires to recognize all three tags is four slots. This means
that the number of slots is increased one slot every time when
the reader sends out each one bit, i.e., “0” or “1.”

For the BT algorithm used in EPC Class 1, the searching
procedure is similar to the BT algorithm used in ISO 18000-6
Type B, but the BT algorithm in EPC Class 1 will divide a
group into 8 subgroups based on 3 bits at each step [2]. There
are both advantages and disadvantages between the BT
algorithm used in ISO and EPC as illustrated in Section IV.

B. Framed Slotted ALOHA (FSA)
This algorithm developed from the Slotted Aloha

algorithm is used in Type A of ISO 18000-6 [7]. It divides
tags into many groups according to the number of slots
specified by a reader. All tags will random the slot number,
and the tags having the same number will be in the same
group.

First, the reader sends an “Init_round” command to tags
for setting the number of slots within one frame. Next, tags
randomly pick a slot number between 0 to “slot_number,” and
record it into a “slot_count.” If the “slot_count” equals to the
required “slot_number,” the tag will respond to the reader.
Then, three possible outcomes could happen:
1) No Tag respond

Reader will send a “Close_slot” command to all tags to
 increase “slot_count.”
2) One Tag respond

Reader will pass a “Next_slot” command to the
 responded tag so as not to respond the reader in next
 frames.
3) Multiple Tags respond

Reader recognizes a collision and will send “Close_slot”
 to collided tags so as to increase “slot_count.”

This procedure repeats until the reader can identify all tags
completely [6]. In FSA, the total number of slots is equal to
all slots used in the FSA algorithm.

C. Dynamic Framed Slotted ALOHA (DFSA)
This algorithm developed from FSA is utilized in Class 1

Generation 2 of EPC. It works similar to FSA except that the
number of slots in each frame can be adjusted based on a Q-
parameter [3, 4].

In DFSA, a reader sends a command to tags for specifying
a Q-parameter. Next, tags randomly select and record values
between 0 and Q-parameter into “slot_counter.” The tag with
“slot_counter” equal to 0 will respond back to the reader.
Then, the reader sends a “Query” command to decrease the
value of “slot_counter”, and also sends a “QueryAdjust”
command to adjust the value of Q-parameter. However, if
there are empty or collided slots more than the number of
accepted slots, tags will repeat all steps until the reader can
identify all tags.

III. PROPOSED ANTI-COLLISION ALGORITHM
When we know some a-priori information about the tags,

we will be able to improve the performance of an existing
anti-collision algorithm. In this paper, three a-priori
information are considered in this paper, i.e.,
1) Suppose a-priori information about the total number of

tag’s manufacturers is known. We found that for each
application, if possible, it is preferable to employ all tags
from one manufacturer in the system.

2) Suppose the total number of tags needed to identify is
known. In this case, we found that there is no significant
performance improvement when we use this information
in an anti-collision algorithm.

3) Suppose the manufacturer code of tags is known. In this
case, we can use this information to improve the
performance of an anti-collision algorithm. Specifically,
the manufacturer code helps reduce the time to identify
all tags.

Figure 2 shows a structure of tag’s ID number. In a
searching process, all anti-collision algorithms begins with the
MSBID (i.e., the first bit in the right-hand side of Fig. 2), and
continues to the 64-th bit. The proposed anti-collision
algorithm is the existing anti-collision algorithm that exploits
a-priori information. This means that if we know a
manufacturer code (i.e., IC manufacturer serial number in
Fig.2), the proposed anti-collision algorithm can start the
searching process at the 33-th bit, instead of the first bit.
Clearly, this will reduce the time to identify all tags. As
shown in simulation, the proposed anti-collision algorithm
identifies all tags much faster than other algorithms.

Fig. 2. A structure of tag’s ID number used in ISO 18000-6 [7].

Fig. 3. Performance comparison of BT 1-bit, BT 3-bit, and DFSA.

IV. SIMULATION
Performance comparison of anti-collision algorithms has

been investigated in [1, 6]. In this paper, we compare the
performance of the proposed anti-collision algorithm with the
existing algorithms in different aspects as follows.

A. DFSA and Binary Tree
Here, we compare the performance of three algorithms, i.e.,

Binary Tree 1 bit (BT 1-bit), Binary Tree 3 bits (BT 3-bit),
and DFSA, we assume that the tag’s ID consists of 10 bits (all
random bits). Note that we cannot simulate 64-bit tag’s ID
because of the limitation of memory requirement. Figure 3
compares the performance of different algorithms, where the
x-axis represents the number of used tags in percentage, and
the y-axis is the total number of used slots. The less the total
numbers of used slots, the faster the algorithm’s speed. It is
clear that the BT performs better than the DSFA, especially
when the number of tags is large. This is because the DFSA
divides groups of tags randomly into slots. Thus, tags are
more likely to collide, especially when a large number of tags
present in the reader’s field. Furthermore, the BT 1-bit
performs better than the BT 3-bit when the number of used
tags is less than 25%, but worse than the BT 3-bit when the
number of used tags is larger than 25%. Therefore, the
selected algorithm depends on the number of used tags for a
given application.

B. Binary Tree with multiple manufacturer codes
In Figure 3, we assume that the tag’s ID consists of 20 bits.

Here, we consider the case where the IC manufacturer code is
known and can be divided into one, two, and three groups (i.e.
the first 10 bits are the same for each group, the last 10 bits
are random numbers). We expected that the number of groups
affects the performance of algorithms. Figure 4 compares the
performance of BT with 1, 2, and 3 manufacturer codes,
where each point is averaged by 10 data sets.

It is apparent from Fig. 4 that the BT with 1 manufacturer
code performs better than that with 2 and 3 manufacturer codes.

Fig. 4. Performance of BT with multiple manufacturer codes.

As expected, the results confirm that the more the difference
in the IC manufacturer codes, the more the number of slots
required to identify all tags. Therefore, for one application, it
is preferable to use all tags from one manufacturer if possible.

C. Smart Binary Tree algorithm
In this section, we compare the performance of our

proposed anti-collision algorithm with the existing ones. We
consider two cases of a-priori information, i.e., when the total
number of tags is known and when the manufacturer codes are
known.

The proposed algorithm that knows when the total
number of tags needed to identify is the normal anti-collision
algorithm, but it will stop the searching process when all tags
are identified. We observed that there is no significant
performance improvement (not shown here) when the reader
knows the total number of tags needed to identify. This is
because the normal algorithm will also stop the searching
processing when no tag responds when querying.

However, if a-priori information about manufacturer
codes is known, we can then improve the performance of anti-
collision algorithms. Let us denote “Smart BT n-bit” as the
BT n-bit algorithm that exploits such a-priori information.
We also assume that the tag’s ID number consists of 19 bits
(the first 9 bits represent a manufacturer code and the last 10
bits represent a random ID number (again, we cannot simulate
a 64-bit tag’s ID number because of the limitation of memory
requirement). Then, with the Smart BT algorithm, the
searching process skips the 9-bit manufacturer code, and starts
the normal BT algorithm at the first bit of the 10-bit ID
number.

Figure 5 compares the performance of BT and Smart BT
algorithms with one manufacturer code. Clearly, the Smart
BT performs better than the BT. For the Smart BT algorithm,
the decision point to decide whether or not 1-bit or 3-bit
searching process should be used is approximately at 50% of
the number of used tags, whereas for the BT algorithm, the
decision point is at 26% of the number of used tags.

Fig. 5. Performance of BT and Smart BT with one manufacturer code.

TABLE I

COMPARISON OF THE NUMBER OF USED SLOTS

BT BT 3 bit BT BT 3 bit BT BT 3 bit
30% 736 844 362 462 50.815 45.26
50% 1133 1316 557 564 50.838 57.142
70% 1497 1762 733 581 51.035 67.026

% of tags Normal Smart
Percentage of slot

reduction (%)
One manufacturer code (total slots)

Table I shows the total number of slots used in the Smart
and Normal BT algorithm (extracted from Fig. 5). We found
that the Smart BT algorithm requires the number of slots less
than the BT algorithm, approximately 50%. We also compare
the performance of BT and Smart BT algorithms with three
manufacturer codes as depicted in Fig. 6. Clearly, the
performance improvement is not significant. In this case, the
Smart BT algorithm performs well when the numbers of tags
are known prior to the communication, but the manufacturer
codes of three companies have no role in time slot reduction.
It is not possible for the reader to know beforehand which tags
of three companies will be first read and thus keep sending the
new command until no collision occurs. However, the smart
BT algorithm will in general perform better than the normal
BT algorithm.

V. CONCLUSIONS
Based on simulation results, we can summarize the

performance comparison among existing anti-collision
algorithms as illustrated in Table II. The speed is referred to as
the operation time used in each algorithm. The complexity is
referred to as the system request memory, computation, and
another function on tags.

The anti-collision algorithms are crucial to the application
that uses a lot of tags. In general, the Binary Tree algorithm
performs faster than the DFSA algorithm as shown in Fig. 3.
Furthermore, one should employ tags with one manufacture
code in each application to expedite the identification process.
In this paper, the anti-collision algorithm that exploits a-priori
information about the manufacturer code is proposed. Clearly,

Fig. 6. Performance of BT and Smart BT with three manufacturer codes.

TABLE I

DETAILS OF EACH ALGORITHM

Type FSA DFSA BT 1-bit BT 3-bit
Details
1) Speed slow normal fast normal
2) Ability to add tags
 while working
3) Complexity normal highest low low
4) Security of tag's IDs √ √ X X

 √ √ X X

the proposed algorithm performs better than any existing anti-
collision algorithm in terms of the number of used time slots.

ACKNOWLEDGMENT
This work was supported by National Science and

Technology Development Agency (NSTDA) and the RFID
Program, National Electronics and Computer Technology
Center (NECTEC), Thailand, under grant TG-44-21-50-098M.

REFERENCES
[1] T. Cheng and L. Jin, “Analysis and Simulation of RFID Anti-collision

Algorithm,” IEEE Advanced Communication Technology, vol. 1, pp.
697 – 701, Mar. 2007.

[2] EPC Global. 860MHz~930MHz Class I Radio Frequency Identification
Tag Radio Frequency & Logical Communication Interface Specification
Candidate Recommendation, Version 1.0.1.

[3] EPC Global. EPCTM Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860
MHz~960MHz, Version 1.0.9.

[4] W. J. Shin and J. G. Kim, “Partitioning of Tags for Near-Optimum
RFID Anti-collision Performance,” IEEE Wireless communications and
Networking Conference, pp. 1673-1678, Mar. 2007.

[5] C. Abraham, V. Ahuja, A. K. Ghosh, and P. Pakanati, “Inventory
Management using Passive RFID Tags: A Survey,” Department of
Computer Science thesis, University of Texas at Dallas, Richardson,
Texas.

[6] R. Ahmed, “Performance Comparison of RFID Tag Anti-collision
Algorithm using Simulation and Real Testing Based,” M. Eng. thesis,
Asian Institute of Technology, Thailand, May.2007.

[7] ISO/IEC 18000-6:2003(E), Part 6: Parameters for air inter-face
communications at 860-960 MHz, Nov. 26, 2003.

[8] K. Finkenzeller, RFID handbook, John Wiley & Sons, West Sussex,
2003.

