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   Abstract

Repetition of signals due to reflection from ceiling, wall, floor and other objects in an
enclosed environment can be perceived as the acoustic echo. It is resulted from the hands-free
operation on the cellular, teleconferencing application and hearing aid system. Since the echo
propagates in an enclosed environment, e.g. a room, the room acoustics acts as a filter. To
remove the acoustic echo successfully, an estimate of the room impulse response is needed.

Given experimental data, a system identification technique is employed as a tool to
build the estimated model of the room impulse response. Herein, its model parameters can be
estimated by means of an off-line or batch method in the least squares sense. Several
traditional linear model structures have been presented. However, they often lead to an
approximation of very high order. In order to reduce the number of estimated parameters,
alternative methods for modeling the room impulse response need to be investigated.

Approximation of the room impulse response by means of the so-called Laguerre and
Kautz functions, which are the z-transform of a class of orthonormal exponentials, is then
studied and examined. One of the most important parameters of these two functions is their
dominating pole location. It can be shown that the number of estimated parameters is
substantially reduced and the numerical accuracy is improved when the dominating pole is
chosen properly. For a fixed model order, there exists the optimum choice of a dominating
pole which gives the best approximation. Many methods to find a dominating pole are also
given. Furthermore, since the typical echo response can be decomposed into two parts, i.e. the
first part has rapid time variation and the second part is slowly decaying towards zero, the use
of a two-stage echo canceller is then noteworthy to introduce and analyze.

As a preliminary step to investigate the possibility of reducing the number of
estimated parameters by the proposed models, we shall therefore not consider the on-line
(recursive or adaptive) method to find the values of the model parameters. Instead, the data
used in this thesis project has been collected from the system (echo path) that is made as near
stationary as possible in order to be able to use the off-line method to estimate the model
parameters.
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  1. Introduction

In this section, the background of an acoustic echo is described. More details in an
acoustic feedback coupling mechanism are introduced. The general concept of an echo
canceller is described. Lastly, the problem definition of the thesis project and the organization
of the thesis report are also given.
  

1.1 Acoustic Echo

Echo is a phenomenon in which a delayed and distorted replica of an original sound or
electrical signal is reflected back to the source. Acoustic echo is caused by the reflection of
the loudspeaker’s sound from ceiling, wall, window, floor and other objects in an enclosed
environment, e.g. in a room, back to the microphone as shown in Fig.1.1. In addition, acoustic
echo may also result from a feedback path set up between the speaker and the microphone in
teleconference and hearing aid systems. Note that, the near-end talker B can be viewed as
combined signals between the pure speech signal from talker B and the acoustic echo
generated by far-end talker A signal.

loudspeaker

microphone

Enclosed environment

Far-End Talker A

Near-End Talker B x t( )

Figure 1.1: An acoustic echo generating system

The effects of an echo depend upon the time delay between the incident and the
reflected waves, the strength of the reflected waves, and the number of echo paths through
which the waves are reflected. In general, acoustic echo is reflected from many different
surfaces and propagates through different paths. If the time delay is not too long, the acoustic
echo can be viewed as a soft reverberation which enhances the artistic quality of a musical
performance in a concert hall or a church hall. However, the acoustic echo arriving several
tens of ms after the direct waves is undesirable and annoying. The echo cancellation system is
therefore required when the effect of an echo exceeds an acceptable level.

Naturally, the problem of acoustic echo is quite complicated for a number of reasons:
• The time delay of acoustic echo is too long (up to a second). This implies that a large

number of estimated parameters, probably in the order of a few thousands, are needed in
the transversal FIR filter to obtain a reasonable approximation.
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• The characteristic of an acoustic echo path is rather non-stationary owing to opening or
closing of a door, or a moving person.

• The acoustic echo results from reflection of the loudspeaker’s sound from many different
paths, e.g. from walls, windows, floors and other objects in an enclosed environment.

• The echo path is not well approximated by a FIR and IIR linear filter because it has a
mixture of linear and non-linear characteristics. The reflection of acoustic signals inside a
room is almost linearly distorted, but the loudspeaker produces non-linearity.

 
 

 1.2 Acoustic Feedback Coupling Mechanism
 
 The problem in hand-free telephones, e.g. in teleconference system, and hearing aid
system is the feedback coupling of the sound waves between the loudspeakers and the
microphones. Acoustic feedback is also easily experienced in howling if a significant portion
of the sound energy, transmitted to the loudspeaker, is received back to the microphone and
circulated in the feedback loop. The total round-gain of the acoustic feedback loop relies on
the frequency responses of the electrical and the acoustic signal paths. If the microphone-
speaker-room system is excited at a frequency whose loop gain is greater than unity, then the
far-end signal is amplified in a loop and results in a feedback howling.
 Many methods for eliminating such an acoustic feedback are as follows:
• Install a frequency shifter or a phase shifter in the electrical path of the feedback loop.

Each time the signal travels in the feedback loop it will be shifted by a few hertz before
being retransmitted by the loudspeaker. This method can merely reduce the effect of
howling but not the overall echo.

• Reduce the system gain at frequencies where acoustic oscillations emerge by using an
adaptive notch filter. The drawback of this method is that there exist some distortion on
the desired signal frequencies.

• Use the adaptive echo cancellation system which is known as the most effective method
to eliminate the echo.

 
 

 1.3 Echo Canceller (EC)
 
 An effective way of removing the acoustic echo signal is to use an echo canceller. The
EC first estimates the characteristics (or transfer function) of the true echo path, and then
generates a replica of the true echo signal that is used to eliminate the true echo signal by
subtraction. Since the transfer function of the echo path is generally unknown, an estimate of
it must be determined. Several methods are employed to find the approximated transfer
function which will be discussed in the sequels. The acoustic echo cancellation in an enclosed
environment is depicted in Fig.1.2.

 The synthetic echo, �( )r t , is generated by passing the far-end signal u(t) through the
estimated model of the true echo path, He represents the transfer function of the true echo
path, r(t) is the true echo signal produced from the true echo path, i.e. r(t) = He∗u(t) where ∗
denotes the convolution sum, and x(t) is the desired signal from the echo canceller. Therefore,
the combined signal y(t) = r(t) + x(t) is subtracted from the synthetic echo, �( )r t , to obtain the
canceller error signal,

 
                                                           e t r t x t r t( ) ( ( ) ( )) �( )= + −                                            (1.1)
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Estimated model

H

loudspeaker

microphone

Enclosed environment

u(t)

�( )r t

y(t)=r(t)+x(t)e(t)

Far-End Talker A

Near-End Talker B

He

x t( )

 
 Figure 1.2  The acoustic echo cancellation in an enclosed environment

 
 Typically, a good echo canceller yields e(t) = x(t). Note that, x(t) can be perceived as the near-
end speaker’s speech signal and/or unknown disturbance. To model the echo path correctly,
one must avoid to interpret x(t) as a part of the true echo signal. In this thesis report, x(t) is
assumed for simplicity to be low-level disturbance and uncorrelated with the true echo signal.
 In theory, the number of parameters employed in the filter depends upon the echo path
delay and the length of the impulse response of an echo path. For the echo canceller to work
suitably, the number of parameters should have a length greater than the combined effect of
the true echo path’s impulse response length and the echo path delay. Let Ts be the sampling
period of the digitized speech signal, M be the number of parameters used in the filter, and τ
be the combined effect to be considered. Consequently, one obtain [14]
 
                                                                       MTs > τ                                                          (1.2)
 

 Since the typical value of Ts is 125 µs for a standard digital communication system, it is
obvious that, if τ = 500 ms, M > 4000 parameters are required in the filter.
 
 

 1.4 Problem Definition
 

 In hands-free operation of the cellular, an undesired acoustical feedback of the loud-
speaker occurs. To avoid transmitting the loudspeaker signal via the microphone, an acoustic
echo cancellation algorithm must be employed. However, since the loudspeaker’s signal
propagates in an enclosed environment, e.g. a room, the room acoustics then acts as a filter. In
order to eliminate the acoustic echo, an estimate of the room impulse response is needed.

 The impulse response of an office room are often modeled as a Finite Impulse
Response (FIR). A drawback with a FIR model is that the number of parameters to be
estimated is considerably large, probably in the order of 4000. This will absolutely affect the
complexity of any acoustic echo cancellation algorithms. To reduce the number of estimated
parameters, alternative models are needed to investigate.

 Therefore, the aim of the thesis project is to try alternative representations for room
impulse response which require fewer parameters than a FIR model.
 
 

 1.5 Organization of the Thesis Report
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 In the next section, some preliminary theories and terminology about LTI system,
difference equation, z-domain analysis and linear algebra are given. The fundamental theory
of system identification that is employed as a basic tool to construct the estimated model of
the system of interest is described in section 3. The least squares method used to find the
suitable value of estimated parameters by means of an off-line method is explained in section
4. Section 5 presents a few relevant linear model structures. The use of orthonormal basis
function, which is employed to reduce the number of estimated parameters, is introduced in
section 6. The concept of a two-stage echo cenceller, which has the first stage as a FIR model
and the second stage as an orthonormal model, is also described. It has shown that the
performance of using an orthonormal model depends primarily upon the model order and its
dominating pole. For a fixed model order, there exists the optimal dominating pole that yields
the best approximation. Several methods employed to find such an optimal dominating pole
will then be given in section 7. Remarkable suggestion on the concept of model reduction is
also introduced. Three examples based on the simulated data are shown in section 8. The
process of generating and collecting the real acoustic echo data and its experimental result are
explained in section 9. Eventually, the conclusions of the thesis project and the suggestions of
future works are presented in section 10 and 11, respectively.
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   2. Preliminary Theory and Terminology
 

 
 

 The aim of this section is to provide a brief overview of the fundamentals of LTI
system, difference equation, z-domain analysis and linear algebra [17]. Some notations and
terminology are introduced which will be used throughout this report.
 
 

 2.1 LTI system
 
 The system that is both linear and time-invariant is generally called as a linear time-
invariant (LTI) system. In this thesis project, we shall mainly deal with the LTI system that is
also causal and stable. Such properties can be described as follows:
 

 2.1.1 Linearity
 

 Let T[-] denote the system. A system is said to be linear if, for any two inputs u1(n)
and u2(n) and for any two constants a and b, the following equation is satisfied
 

                                         [ ] [ ] [ ]T au n bu n aT u n bT u n1 2 1 2( ) ( ) ( ) ( )+ = +                               (2.1)

 
 This property implies that if the input can be decomposed into the sum of weighted and
shifted unit samples, such that
 

                                                         u n u k n k
k

( ) ( ) ( )= −
=−∞

∞

∑ δ                                               (2.2)

 
 the output is then
 

                                              [ ]y n u k T n k u k h nk
kk

( ) ( ) ( ) ( ) ( )= − =
=−∞

∞

=−∞

∞

∑∑ δ                                  (2.3)

 

 where [ ]h n T n kk ( ) ( )= −δ  is the response of the system to the delayed unit sample δ(n-k).

Apparently, a linear system is completely specified once the signals hk(n) are known.
 

 2.1.2 Time-invariance (or Shift-invariance)
 
 A system is said to be time-invariant if a shift in the input signal by n0 results in an
equivalent shift in the output signal by n0. That is, if y(n) is the response of a time-invariant
system to an input x(n), thereby for any shift in the input, x(n-n0), the response of the system
will be y(n-n0). In effect, time-invariance means that the properties and/or responses of the
system do not change in time.

 For a time-invariant system, if [ ]h n T n( ) ( )= δ  is the response to a unit sample δ(n),

the response to δ(n-k) is h(n-k). As a consequence, the LTI system can be represented by
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                                                 y n x n h n x k h n k
k

( ) ( ) ( ) ( ) ( )= ∗ = −
=−∞

∞

∑                                   (2.4)

 

 where ∗ denotes the convolution sum. Since the convolution sum allows one to evaluate the
response of the LTI system to arbitrary input x(n), the LTI system is uniquely characterized by
its response, h(n), to a unit sample. Therefore, h(n) is referred to as the unit sample response
of the system.
 

 2.1.3 Causality
 
 Causality is an important property for dealing with all real-time systems. The system
is causal if the output y(n) at an arbitrary time n = n0 depends only upon the input for n ≤ n0.
In other words, the output of a causal system at the present time n0 relies only on the present
and/or past input values, not on the future values. Equivalently, if a system is linear and time-
invariant, hence it is a causal system if and only if h(n) = 0 for n < 0.
 

 2.1.4 Stability
 
 It is desirable to have the output that is bounded in amplitude whenever the input is
bounded, i.e. if for any bounded system input x(n),
 

                                                                   | x(n) | ≤ B1 < ∞                                                   (2.5)
 
 the system output y(n) is also bounded,
 

                                                                   | y(n) | ≤ B2 < ∞                                                   (2.6)
 
 where B1 and B2 are finite constants. A system with this property is said to be stable in
Bounded-Input Bounded-Output (BIBO) sense. A LTI system is BIBO stable if and only if the
unit sample response h(n) is absolutely summable
 

                                                                      h n
n

( ) < ∞
=−∞

∞

∑                                                   (2.7)

 
 

 2.2 Difference Equation
 

 The important classes of LTI systems are those for which the input x(n) and output y
(n) can be represented in terms of a difference equation with constant coefficients. Such a
difference equation plays an important role for describing the input/output relationship in
many fields of sciences, such as signal processing, communication, etc., because it is easy to
interpret and analyze.  The general difference equation can be expressed by
 

                                                     y n a y n k b x n kk k
k

nb

k

na

( ) ( ) ( )+ − = −
==

∑∑
01

                              (2.8)

 
 where na and nb determine the order of the system, and ak and bk are the filter coefficients
that characterize the system. Obviously, the output y(n) is a linear combination of the past



 2. Preliminary Theory and Terminology                                                                                                               7

output values, y(n-k) for k=1,2,...,na, coupled with the past and present input values, x(n-k),
for k=0,1,2,...,nb.
 As an special case when na = 0, the difference equation becomes
 

                                                                 y n b x n kk
k

nb

( ) ( )= −
=

∑
0

                                           (2.9)

 
 The output is simply a weighted sum of the past and present values. Consequently, the unit
sample response is finite in length,
 

                                                                 h n b n kk
k

nb

( ) ( )= −
=

∑ δ
0

                                         (2.10)

 
 and the system is then referred to as a Finite length Impulse Response(FIR) system. However,
when na ≠ 0, the unit sample response is infinite in length and the system is referred to as an
Infinite length Impulse Response (IIR) system.
 
 

 2.3 Z-Domain Analysis
 

 The z-transform of a discrete-time signal x(n) is defined as
 

                                                                  X z x n z n

n

( ) ( )= −

=−∞

∞

∑                                           (2.11)

 
 It is only defined when the sum in Eq.(2.11) converges. The z-transform usually converges for
only a certain range of complex-valued variable z known as the region of convergence (ROC),
the domain where z-transform of x(n) exists. Typically, this region must always be specified
along with X(z) in order for z-transform to be complete.
 The inverse z-transform is a method to find the corresponding signal x(n) from a given
X(z). Based on the Cauchy integral theorem which is given by
 

                                                                  
1

2
1

π
δ

j
z dz kk−∫ =

Γ
( )                                           (2.12)

 

 where Γ is a closed path in a counterclockwise direction, including the origin, the inverse z-
transform of X(z) is defined as
 

                                                           x n
j

X z z dzn( ) ( )= −∫
1

2
1

π Γ
                                         (2.13)

 

 where Γ is a contour integration in the ROC. It is also of importance to know when the z-
transform exists, i.e. the z-transform of x(n) exists if and only if the sequence {x(n)r-n} is
absolutely summable for some values of r, i.e.
 

                                                                   x n r n

n

( ) −

=−∞

∞

∑ < ∞                                              (2.14)
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    The z-transform of special importance in the design and analysis of LTI systems is the
system function, which is the z-transform of the unit sample response
 

                                                                  H z h n z
n

n( ) ( )=
=−∞

∞
−∑                                            (2.15)

 
 For a FIR system given in Eq.(2.9), the corresponding system function is a polynomial in z-1

 

                                                    H z b z b z zk
k

k

nb

k
k

nb

( ) ( )= = ∏ −−

=

−

=
∑ 0

1

1

0

1                                (2.16)

 
 where the roots of this polynomial, zk, are called zeros of the filter. This type of system
function is normally referred to as an all-zero filter. For the case of an IIR system given in Eq.
(2.8), the system function is a ratio of two polynomial in z-1

 

                                              H z

b z

a z

b
z z

p z

k
k

k

nb

k
k

k

na

k

nb

k

k

na

k
k

( )
( )

( )
=

+
=

∏ −

∏ −

−

=

−

=

=

−

=

−

∑

∑
0

1

0
1

1

1
1

1

1
                              (2.17)

 
 where the roots of the numerator polynomial, zk, are the zeros of H(z) and the roots of the
denominator polynomial, pk, are called the poles. A special case when nb=0, the system
function in Eq.(2.17) is known as an all-pole filter, i.e.
 

                                               H z
b

a z

b

p z
k

k

k

na

k

na

k
k

( )
( )

=
+

=
∏ −−

=
=

−∑
0

1

0

1
1 1

                                 (2.18)

 
 2.3.1 Stability
 

 A LTI system is BIBO stable if and only if the ROC of H(z) includes the unit circle,
i.e. H(z) with ROC: | z | ≥ 1. On the other hand, a causal LTI system is said to be BIBO stable
if and only if all the poles of H(z) lie inside the unit circle, i.e. | pk | < 1 for all k.

 

 2.3.2 Maximum, Minimum and Mixed phase systems
 
 The system is said to be a minimum phase system if all zeros are inside the unit circle,
while it is a maximum phase system if all zeros lie outside the unit circle. If the zeros lie both
inside and outside the unit circle, the system is known as a mixed phase system. For an IIR
system, the inverse system is stable if it is a minimum phase system.
 A mixed phase system, H(z), can be decomposed to a minimum phase system, Hmin(z),
and all-pass system, Hap(z), such that
 
                                                               H z H z H zap( ) ( ) ( )min=                                          (2.19)

 
 Suppose that H(z) = B(z) / A(z) and B(z) = B1(z)B2(z), where B1(z) is a minimum phase system
and B2(z) is a maximum phase system. Then the system function can be written as
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                                         H z
B z B z

A z

B z B z

A z

B z

B z
( )

( ) ( )

( )

( ) ( )

( )

( )

( )
= =
















−

−
1 2 1 2

1
2

2
1                     (2.20)

 
  where
 

                                        H z
B z B z

A zmin ( )
( ) ( )

( )
=

−
1 2

1

    and    H z
B z

B zap ( )
( )

( )
= −

2

2
1                 (2.21)

 
 Note that, an all-pass system, Hap(z), is always stable with maximum phase.
 
 

 2.4 Linear Algebra
 
 To deal with a problem in signal modeling and system identification, it is convenient
to represent the signals in terms of the vector and matrix forms. Such a representation
simplifies many mathematical expressions and allows us to draw upon many useful results
from linear algebra to solve the problem. Herein, we shall present the fundamentals of linear
algebra.
 

 2.4.1 Vectors
 
    A vector is an array of real or complex values for which it is usually used to represent
the value of discrete time signals. We shall denote the vector by lowercase bold letters. A
column vector y with N elements, usually referred to as a N-dimensional vector, is given by,
 

                                                                     y =



















y

y

yN

1

2

�
                                                       (2.22)

 

 The transpose of a vector , yT, is a row vector
 

                                                               yT =  [ y1, y2, ..., yN ]                                             (2.23)
 

 and the Hermitian transpose, yH, is defined as the complex conjugate of the transpose of y
 

                                                        yH = (yT)∗ = [ ]y y yN1 2
∗ ∗ ∗, , .. . ,                                        (2.24)

 

 where (•)* denotes the complex conjugate operation.
 

 2.4.2 Norm
 
 Several operations performed on a vector will primarily involve finding the magnitude
of a vector. The norm or distance metric is usually used to find the magnitude of a vector.
Given y = [ y1, y2, ..., yN ]T, the Euclidean or L2 norm is defined as
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                                                                y
2

2

1

1 2

=






=

∑ yi
i

N /

                                             (2.25)

 
 Other useful norms are the L1 norm
 

                                                                   y
1

1

=
=
∑ yi
i

N

                                                    (2.26)

 

 and the L∞ norm
 

                                                                  y
∞

= max
i

iy                                                   (2.27)

 
 Since L2 norm is normally preferable to cope with the problem in system identification, we

shall denote L2 norm by y , unless indicated otherwise.

 Assuming that the norm y  ≠ 0, a vector may be normalized to have unit magnitude

by dividing by its norm. Hence
 

                                                           v
y

y
y =                                                       (2.28)

 

 is a unit norm that lies in the same direction as y. The squared norm of signals y(n) is equal to
the signal energy, Ey, i.e.
 

                                                               y
2 2

1

= =
=

∑ y n E
n

N

y( )                                          (2.29)

 

 2.4.3 Inner product
 

 Given two complex-valued vectors a = [a1, a2, ..., aN]T and b =  [b1, b2, ..., bN]T, the
inner product is the scalar value determined by
 

                                                             a, b  = aH b = a bi i
i

N
∗

=
∑

1

                                         (2.30)

 
 The inner product can also be viewed as the geometrical relationship between two vectors
given by
                                                                 a, b a b= cosθ                                             (2.31)
 

 where θ is the angle between two vectors. Two nonzero vectors, a and b, are said to be
orthogonal if their inner product is equal to zero.
 

                                                                          a, b = 0                                                   (2.32)
 
 Additionally, two vectors that are orthogonal and have unit norm are said to be orthonormal.
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 2.4.4 Projection
 

  Projection of a vector x onto y is defined as
 

                                                    projy x x, y
y

y, y
x, y

y

y
( ) = = 2                               (2.33)

 

 Since the vector projy(x) is parallel with y, then
 

                                                                     x - projy(x) ⊥  y                                             (2.34)
 

 2.4.5 Linear combination and linear independence
 
 A sum of scaled vectors is called a linear combination, i.e. for any arbitrary complex
constants of αi for i = 1,2,...,N, the linear combination of vectors {y1, y2, ..., yN} is given by
 

                                                                            α i i
i

N

y
=
∑

1

                                                   (2.35)

 

 Moreover, a set of vectors {y1, y2, ..., yN} is said to be linear independent if and only if
 

                                                                        α i i
i

N

y =
=
∑ 0

1

                                                (2.36)

 

 only when αi = 0 for all i. If the Eq.(2.36) is satisfied but αi ≠ 0 for all i, then a set of vectors
{ y1, y2, ..., yN} is said to be linear dependent.
 

 2.4.6 Bases and coordinates
 

 A basis for the subspace span {x1, x2, ..., xM} is defined as a set of linearly
independent vectors {y1, y2, ..., yN} such that
 

                                               span {x1, x2, ..., xM} =  span {y1, y2, ..., yN}                        (2.37)
 

 That is, every vector x in span {x1, x2, ..., xM} can be written as a linear combination of

vectors {y1, y2, ..., yN}. If y , yi j = 0 for i ≠ j, the basis is called an orthogonal basis. In

addition, if y , yi j = 0 for i ≠ j and y i  = y j  = 1, the basis is called an orthonormal

basis.
 If { y1, y2, ..., yN} are orthonormal bases for span {x1, x2, ..., xM}, thus every x ∈ span

{ x1, x2, ..., xM} can be written as a linear combination of {y1, y2, ..., yN} in such a way that
 

                                                                         x y i=
=
∑α i
i

N

1

                                               (2.38)

 

 where αj is called the coordinate of x with respect to yj and can be computed by
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                                   x, y y y y , yj i j i j= = = =
= = =
∑ ∑ ∑α α α δ αi
i

N

i
i

N

i ij j
i

N

1 1 1

,                (2.39)

 

 where δij is the Kronecker delta function (δij = 1 only if i = j , and 0 elsewhere).
 

 2.4.7 The Gram-Schmidt procedure
 

 Given a set of vectors {x1, x2, ..., xM}, we shall construct the orthonormal basis
vectors {y1, y2, ..., yN} to span {x1, x2, ..., xM}. The set of M vectors spans N = M dimensional
space only if the xi, for i = 1, ..., M, are linearly independent. If the xi are not linearly
independent, then N < M.
 The number of dimensions, N, required to represent the set of vectors {x1, x2, ..., xM}
and a corresponding set of orthonormal basis vectors {y1, y2, ..., yN} can be obtained by using
the Gram-Schmidt procedure. Based on a concept of signal projection, i.e. x - projy(x) ⊥ y, a
set of vectors {y1, y2, ..., yN} is said to be orthonormal if and only if
 

                          x x x xy y y− − − −proj proj proj
L1 2

( ) ( ) ( )�  ⊥ yi,   for i =1,2,...,L        (2.40)

 

 The recursive procedure used to calculate the orthonormal basis vectors {y1, y2, ..., yN} from
{ x1, x2, ..., xM} can be done as follows
 

• Assume that {x1, x2, ..., xM} are linearly independent.

• Compute the first orthonormal basis vector from y x x1 1 1= / .

• For j = 2, 3, ..., M
 (a) Calculate the next basis function which is orthogonal to all yi, for i = 1, 2, ..., j-1

 

                                           ~ ( ) ,y x x x x y yyj j j j j l l
l

j

l

j

proj
l

= − = −
=

−

=

−

∑∑
1

1

1

1

                         (2.41)

 

       (b) Normalize ~y j  by its norm to be orthonormal basis vector yj.

 

                                                                  y
y

y
j

j

j

=
~

~
                                                         (2.42)

 
 

 2.4.8 Matrices
 

 An n × m matrix is an array of real or complex values having n rows and m columns,
 

                                                    A a

a a a

a a a

a a a

ij

m

m

n n nm

= =



















{ }

11 12 1

21 22 2

1 2

�

�

� � �

�

                                  (2.43)
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 The transpose of an n × m matrix, AT, is an m × n matrix that is formed by interchanging the
rows and columns of A. Hence, the (i,j)th element becomes the (j,i)th element. The Hermitian
transpose denoted by AH is the complex conjugate of the transpose of A, i.e.
 

                                                                 AH = (A∗)T = (AT)∗                                               (2.44)
 

 Let A be an n × m matrix partitioned into m column vectors
 

                                          A = [ c1, c2, ..., cm ]                                              (2.45)
 

 where ci  = [ a1i, a2i, ..., ani ]T. The rank of A, ρ(A), is defined as the number of linearly
independent columns in A. The property of the rank of a matrix is that the rank of A is equal
to the rank of  AAH and AHA,
 

                                                             ρ(A) = ρ(AAH) = ρ(AHA)                                         (2.46)
 
 Since the rank of a matrix is equal to the number of linearly independent rows and the number
of linearly independent columns, it follows that if A is an n × m matrix then
 

                                                                   ρ(A) ≤ min(n,m)                                               (2.47)
 

 If A is an n × m matrix and ρ(A) = min(n,m), A is said to be of full rank. Theoretically, if A is
a square matrix of full rank, say n × n matrix, there exists a unique inverse matrix of A, A-1,
such that
 

                                                                    A-1A = AA-1 = I                                                (2.48)
 
 where
 

                                                               I  = 

1 0 0

0 1 0

0 0 1

�

�

� � �

�


















                                               (2.49)

 
 is the identity matrix which has ones along the main diagonal and zeros elsewhere. In this
case, a matrix A is said to be invertible or nonsingular. If, however, A is not the full rank, ρ
(A) < n, the inverse matrix of A does not exist and it is said to be noninvertible or singular.
 

 2.4.9 Linear equation
 
 Typically, it is useful to represent the relationship between input and output signals in
terms of linear equation because its solution will then be simplified and can be solved easily.
In order to solve the linear equation, it is necessary to characterize the form of the solution in
terms of existence and uniqueness.
 Consider a set of linear equation with m unknown parameters, gi for i=1,2,...,m, to be
estimated.
                                                          y a g a g a gm m1 11 1 12 2 1= + + +...
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                                                          y a g a g a gm m2 21 1 22 2 2= + + +...

                                                                                �
                                                          y a g a g a gn n n nm m= + + +1 1 2 2 ...
 
 These linear equations can also be written in matrix form as
 

                                                    

y

y

y

a a a

a a a

a a a

g

g

gn

m

m

n n nm m

1

2

11 12 1

21 22 2

1 2

1

2

�

�

�

� � �

�

�



















=





































                               (2.50)

 
 or, equivalently,
 

                                                                          Y = Aθ                                                       (2.51)
 

 where Y = [ y1, y2,...,yn ]T, θ = [ g1, g2, ..., gm ]T and A is given in Eq.(2.43). The solution of
finding θ depends upon the size of n × m and the rank of matrix A.
 

• Square matrix (m = n)
 If A is a square n × n matrix, the solution to the linear equations depends on whether

or not A is singular. If A is nonsingular, then the inverse matrix A-1 exists and the solution is
uniquely defined by
 

                                                                          θ = A-1Y                                                     (2.52)
 
 Nevertheless, if A is singular, there may be either no solution or many solutions.
 

• Rectangular matrix (for n < m)
 When n < m, there are fewer linear equations than unknown parameters. If the
equations are not inconsistent, there exists many vectors satisfying the equations, i.e. the
solution is underdetermined or incompletely specified. The approach to obtain a unique
solution is to find the vector satisfying the equations that have a minimum norm, i.e.
                                                         minθ    such that   Y = Aθ                                        (2.53)
 

 If the rank of A is n, the n × n matrix AAH is invertible and the minimum norm solution is
 

                                                          θ = =−A AA Y YH H( ) 1 Θ                                           (2.54)
 
 where
 

                                                                 Θ = −A AAH H( ) 1                                                (2.55)
 
 is called the pseudo-inverse of the matrix A for the underdetermined problem.
 
 

• Rectangular matrix (for n > m)



 2. Preliminary Theory and Terminology                                                                                                               15

 When n > m, there are more linear equations than unknown parameters and, in
general, no solution exists. The equations are inconsistent and the solution is said to be
overdetermined. However, the parameter vector θ can be solved by means of the least squares
method which will be discussed in section 4. The aim is just to find the optimal parameter θ
leading to the best approximation to Y.
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  3. Fundamental of System Identification
 

 
 
 System identification deals with the problem of constructing the mathematical model
of a dynamic system based on a given set of experimental data. Several fundamental concepts
about system identification are introduced in this section. The procedures of building the
estimated model by means of system identification technique are also given.
 
 

 3.1 Dynamic System
 
 The dynamic system can be conceptually illustrated as in Fig.3.1. The system is
commonly stimulated by external stimuli. External signals that can be controlled by users are
called input u(t), while the other which cannot be manipulated is called disturbance v(t). The
observable signals we are interested in are called output y(t). Typically, for any dynamic
systems, it implies that the current output value depends not only on the current external
stimuli but also on their past values.
 

 
System

Output

    y(t)

Input

  u(t)

Disturbance

       v(t)

 
 Figure 3.1:  A dynamic system.

 
 

 3.2 Type of Models
 
 The purpose of a model is to describe how the various variables of the system relate to
each other. The relationship among these variables is called a model of the system. Modeling
the system of interest is considerably useful in many areas of science as an aid to properly
describe the system’s behavior. A good model must reflect all properties of such an unknown
system. There are several kinds of models which can be classified as follows:
• Mental models which do not involve a mathematical formula. For instance, when driving

a car, one is required the knowledge of turning the wheel, pushing the brake, etc.
• Graphical models which are also suitable for some certain systems using numerical tables

and/or plots. For example, any linear systems can be uniquely described by their impulse,
step, or frequency response which can be obviously represented in graphical forms.

• Mathematical models which describe how the variables relate to each other in terms of
mathematical expressions such as differential and difference equations.

 
 The mathematical models are useful in practice because they provide a description of the
system’s behavior by mathematical expressions which are simply to examine and analyze.
Mathematical models can be derived in two ways, i.e.
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• Modeling refers to derivation of models from basic laws in physics, economics, etc., to
describe the dynamic behavior of a phenomenon or a process. It is done by subdividing an
unknown system into subsystems, whose properties are well known from the basic laws,
and thus combining these subsystems mathematically to obtain the whole system.

• Identification refers to the determination of dynamic models from experimental data. It
consists of the establishment of identification experiment, the determination of a suitable
form of a model coupled with its parameters, and a validation of the model.

 
 

 3.3 System Identification Procedures
 
 The system identification problem is to build a mathematical model from a given set
of observed input and output data. These data can be obtained from the experiments which
are carefully designed and performed on the system. A model is then fitted to the recorded
data by assigning suitable values to its parameters. In many applications, the unknown system
is so complicated that it is not possible to obtain a reasonable model by using only physical
insight. This usually happens when a model based on physical insight contains a number of
unknown parameters even if such a model is derived from physical laws. As a result,
identification techniques must be applied to estimate its unknown parameters.
  Generally, the models obtained by identification techniques have limited validity; for
example, they are valid for a certain experiment, a certain input, etc. Furthermore the
resulting estimated parameters can be solely used as tools to provide a good representation of
the system’s overall behavior. However, it is still an attractive method to build the model due
to simplicity and flexibility. The system identification procedures can be categorized as the
following steps:
 

 3.3.1 Experiment design
 

 The experiment is performed by exciting the system with some sort of chosen input
signal, and thus observing and recording the output signals over a certain time. The aim of
this experiment is to obtain the input and output data as maximally informative as possible in
the presence of unknown disturbances.
 

 3.3.2 Structure and order estimation
 

 Practically, the stable LTI system can be sufficiently modeled by a linear black box
model structure which can be written as
 

                                         A q y t
B q

F q
u t nk

C q

D q
w t( ) * ( )

( )

( )
* ( )

( )

( )
* ( )0 = − +                           (3.1)

 
 where y0(t), u(t) and nk are the output, input and delay respectively. The noise w(t) is white
sequences with zero mean and unit variance. The time shift is then represented by q such that
q-1u(t) = u(t-1). Each polynomial transfer function in the shift operator q is given by
 

 A q a q a q a qna
na( ) ....= + + + +− − −1 1

1
2

2

 C q c q c q c qnc
nc( ) ....= + + + +− − −1 1

1
2

2
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 D q d q d q d qnd
nd( ) ....= + + + +− − −1 1

1
2

2

 F q f q f q f qnf
nf( ) ....= + + + +− − −1 1

1
2

2

 B q b q b q b qnb
nb( ) ....= + + +− − −

1
1

2
2

 
 where na, nc, nd, nf and nb are known as the order of each polynomial. Several model
structures can be derived [13] from Eq.(3.1). For example, FIR model is derived when A(q) =
C(q) = D(q) = F(q) = 1, ARX model corresponds to C(q) = D(q) = F(q) =1, OE model is
obtained when A(q) = C(q) = D(q) =1, etc. FIR, ARX, and OE models will be more described
in section 5.
 

 3.3.3 Parameter estimation
 
 Having selected the model structure, the next step is to estimate its parameters in
order to completely characterize the system of interest. This is known as a key step in system
identification. In the literature, many methods aimed at minimizing the influence of noise on
the estimates can be found. In most of these the identification and estimation steps are linked
together, because it is almost impossible to verify the quality of a model without estimating
its parameters, and it is essential to define a model structure before its parameters can be
estimated. The approach that is used to estimate the model parameters based only on a given
set of observed data is often called off-line or batch. In section 4, we shall present the least
squares method which is usually used to find the optimal values of the model parameters.
 

 3.3.4 Model validation
 
 After the model structure and its parameters have been suitably chosen according to a
certain criteria, such a model is needed to verify whether it can well characterize the system
or not. There exists many tools for model validation for which we shall address only three
principle methods, namely residual check, model fit and cross validation.           
 

• Residual Check
 Due to a presence of noise, there will be some differences between the observed
output and the estimated output. These differences are known as residuals. By investigating
them, it is possible to infer whether or not there still exist errors from the estimated model. If
so, this result will be fed back to the model building process. This check can be done by using
the command “resid” in Matlab program in which the auto-correlation function of the error
and the cross-correlation between error and the input data are computed and displayed within
99% confidence interval. The model could be acceptable if the residue plot lies inside this
region, but it would be rejected if the residue plot goes outside this interval. A significant
peak at lag k shows that the effect from input u(t-k) on y(t) is not appropriately described. A
rule of thumb [11] is that a slowly varying cross-correlation function outside the confidence
region is an indication of too few poles, while the shape peaks indicate too few zeros or
wrong delays.
 

• Model Fit (Fit of Error)
    Model fit is used to verify whether or not the signal generated from an estimated
model differs from the true signal. It can be viewed as the difference, or “fit of error”,
between the true signal and the estimated signal which is given by
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                                                          [ ]V E y t y t( ) ( ( ) �( , ))θ θ= − 2                                         (3.2)

 

 where E[•] is the expectation operation.

 Since the measured N data points are random variables, the estimated parameter �θ N  is

also a random variable. To evaluate the fit of error, we shall take the expectation of V N( � )θ
with respect to the estimation data, i.e.

 

                                                       [ ]F E VN N= ( � )θ                                                  (3.3)

 
 This fit of error will typically rely on the used model structure as well as its model order, the
number of data points N, and the properties of the data, such as input spectra, possible
feedback, etc., employed for estimating θ and calculating the fit of error. Basically, if the fit
of error is small according to our purpose, we have then achieved in modeling the system.
 

• Cross Validation
 To guarantee the quality of an estimated model, the another method to confirm such a
model should be performed. This is referred to as the cross validation method. It is done by
splitting up the data into two parts, the estimation data Zest

N1  that are used to estimate the
model parameters
 

                                                           � arg min ( , )θ θ
θN N est

NV Z
1 1

1=                                          (3.4)

 

 and the validation data Zval
N2  for which the criterion is evaluated such that

 

                                                               � ( � , )F V ZN N N val
N

1 2 1

2= θ                                              (3.5)

 

 where VN  corresponds to the criterion in Eq.(3.2) and �FN will be an unbiased estimate of the
measure FN defined by Eq.(3.3). The procedure would then be to try out a number of model
structures and choose the one that minimizes �FN1

.

 The cross validation approach is somewhat attractive because if the result from Eq.
(3.5) is minimized, one has some confidences in the proposed model, irrespective of any
probabilistic framework that might be imposed. It is therefore the most normally used method
to verify the estimated model. Consequently, we shall primarily evaluate our proposed models
based on the cross validation approach.
 
 

 3.4 Summary
 
 All procedures in system identification technique discussed earlier can be summarized
in the flowchart as depicted in Fig.3.2. It is most likely that the first estimated model will not
pass the model validation test due to some following deficiencies.
• The selected model structure was not appropriate to characterize the system.
• The data set was not informative enough to provide guidance in choosing good models.
• The numerical procedure failed to find the best model according to criterion used.
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• The employed criterion was not good.
 One must go back and revise the various steps in the procedures. As a consequence, in order
to obtain a good estimated model, one must perform each step in system identification
procedures carefully because the result of the current step will affect that of the next step.
Clearly, every step in modeling the system is closely related with each other.

 
 

 

A priori knowledgeDesign of experiment

Perform experiment
and collect data

Choose model structure

Estimate parameters 

Model validation

Start

End

Model 
accepted?

New data setNo

Yes

 

 Figure 3.2: System identification procedures [20].
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   4. Least Squares Method
 

 
 
 Given a set of experimental data, the problem of modeling an unknown system is to
find a good estimated model and its parameters which can characterize the system’s behavior
as accurately as possible. Having chosen the best estimated model, the next task is to find the
values of its parameters. There are many estimators, which possess nearly all properties of an
ideal estimator, leading to good estimated parameters, such as Bayes estimator, Maximum
Likelihood estimator, Markov estimator and Least Squares estimator [10]. Bayes estimator is
the most powerful estimator, but it, however, requires the most a priori information, e.g. a
probability density function (p.d.f.) of the unknown parameters and the p.d.f. of the noise on
the measurements. On the contrary, the Least squares estimator can still be used even if there
is no a priori information available. In this section, we shall then introduce a least squares
method. The statistic properties of an ideal estimator are also given.
 
 

 4.1 Least Squares Method
 

 The Least Squares (LS) method is normally used to determine the optimal values of
the estimated parameters based only on a given set of experimental data. The framework of
using LS method [20] can be described as follows.

 Assuming that the input-output relation of a stable LTI system is given by
 

                                        y t G z u t nk H z w t( ) ( ) ( ) ( ) ( )= − +0 0                                  (4.1)
 

 where G z g zk
k

k

0 0

1
( ) = −

=

∞∑  is a rational stable transfer function, gk
0  are the true parameters,

z-1 is the delay operator, y(t) and u(t) are known output and input signals, nk is the delay, and
w(t) is white sequences with zero mean and unit variance. We shall denote v(t) = H0(z)w(t) as
unknown noise disturbance.

 The estimated output �( , )y t θ  can be considered as the output of the linear transversal
filters of order n  with tap weights gk which can be expressed as
 

                                 �( , ) ( ) ( )y t g z u t nkk k
k

n

θ β= −
=

∑
1

                                      (4.2)

 
 where gk is the parameters to be estimated and βk z( )  stands for a basis function used in the

estimated model; for example, when βk
kz z( ) = − the Eq.(4.2) corresponds to a FIR model.

Typically, a proper choice of basis functions can increase the rate of convergence and reduce
the bias and variance of the estimated model. This leads to less number of parameters to be
estimated but still guarantee a useful model. Regardless of any choices of basis functions
used, the optimal values of estimated parameters can be obtained by the least squares method

 Given N samples of the observed output and input data, Eq.(4.2) can then be rewritten
in the matrix form
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 or, equivalently, in the linear regression form
 

                                                                    �( ) ( )y t tT= ϕ θ                                                    (4.3)
 

 where ϕ(t) = [ β1(z)u(t-nk)  β2(z)u(t-nk)  ...  βn(z)u(t-nk) ]T, for t = 1, 2, ..., N, and θ  = [ g1 g2

...gn ]
T. In general, �( )y t is called regressed variable, the elements in the vector ϕ(t) are known

as regression variables, and θ  is called the parameter vector to be estimated. One can also
write Eq.(4.3) in matrix notation as
 

                                                                         �Y = Φθ
 

 where �Y  = [ �( )y 1 �( )y 2 ... �( )y N ]T and Φ = [ ϕT(1)  ϕT(2)  ... ϕT(N) ]T.
 A simple way to find θ  is to choose the number of measurement, N, equal to n in
order to make Φ being a square matrix. So, if the matrix is nonsingular, i.e. its inverse matrix
exists and the solution is unique, the linear equation of Eq.(4.3) could easily be solved for θ .
Nevertheless, it is a good idea to use a number of observed data, N, greater than n as a
consequence of the fact that the estimation should be improved with the additional data.
Unfortunately, when N > n, Φ becomes overdetermined and the exact solution will not exist.
The least squares method is therefore employed to solve this problem. The purpose is to find
the estimate of θ which gives the best approximation of Y. Let us consider the one-step ahead
prediction error, or error equation, which is given by
 

                                                   ε θ β( , ) ( ) ( ) ( )t y t g z u t nkk k
k

n

= − −
=

∑
1

                                 (4.4)

 
 or in the matrix form
 
                                                                     E Y= − Φθ                                                      (4.5)
 

 where the observed output vector Y = [y(1) y(2) ... y(N)]T and the error vector E = [ε(1,θ) ε
(2,θ) ... ε(N,θ) ]T which is often called residual. The least squares solution of θ  is defined as

the vector �θ  that minimizes the norm of the error (loss function or squared error),
 

                                                          V E Y( )θ θ= = −2 2Φ                                             (4.6)
 
 The geometrical representation of least squares solution is depicted in Fig.4.1. As shown in
Fig.4.1, the least squares solution has the property that the error vector, E, is orthogonal to
each of the vectors that are used in the approximation for Y, i.e. the column vectors of Φ
which is given by βi(z)u(t-nk) where i = 1, 2, ..., n, and t = 1, 2, ..., N. This orthogonality
implies that



 4. Least Squares Method                                                                                                                                       23

 

�Y

Y

E

β1( ) ( )z t nku −

β2 ( ) ( )z t nku −

 
 Figure 4.1: Geometrical illustration of the least squares solution to an overdetermined set of linear equation.

 The best approximation of Y is formed when E is orthogonal to the vectors β1(z)u(t-nk) and β2(z)u(t-nk).
 

                                                                       Φ H E = 0                                                       (4.7)
 
 or, equally,
 

                                                                   Φ Φ ΦH H Yθ =                                                   (4.8)
 

 where (•)H denotes the Hermitian transpose which is defined as ΦH = (Φ*)T = (ΦT)*. If the
column of Φ are linearly independent, i.e. Φ has full rank, then the matrix ΦHΦ is invertible.
The least squares solution is then
 

                                                          � ( )θ = =−Φ Φ Φ ΘH H Y Y1                                            (4.9)
 
 where the matrix
 

                                                                 Θ Φ Φ Φ= −( )H H1                                               (4.10)
 

 is called the pseudo-inverse of the matrix Φ used for the overdetermined problem. Therefore,

the best approximation of �Y  to Y is given by the projection of the vector Y onto the subspace
spanned by the vectors βiu(t-nk) where i = 1, 2, ..., n, i.e.
 

                                                          � � ( )Y YH H= = −Φ Φ Φ Φ Φθ 1                                       (4.11)
 
 Therefore, the minimum value of V ( )θ  can be obtained by expanding the square in Eq.(4.6)
and using the orthogonality condition given in Eq.(4.7), i.e.
 

                                                      V Y E Y Y YH H H
min ( �) �θ θ= = − Φ                                    (4.12)

 
 The identification of the unknown parameters gk (for k=1,2,...,n) through least squares
minimization of ε(t,θ) over the time interval is an identification method which has some
favorable properties. Firstly, it is a linear regression scheme leading to a simple analytical
solution. Secondly, it is the type of output error method, which has the advantage that the
system G0(z) can be estimated consistently whenever the unknown noise disturbance v(t) is
assumed to be uncorrelated with the input signal [12].
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 4.2 Statistical Properties of the Ideal Estimator
 
 Because any estimates are a function of the observed data, which are random
variables, the estimates themselves will then be random variables. As a result, it is essential to
examine the performance of an estimator by investigating its statistical properties which can
be considered in terms of bias, consistency, efficiency and robustness.
 

 4.2.1 Unbiased and asymptotically unbiased estimator
 

 Since the estimation problem deals with finding a true parameter, θ, from a given set

of N random variables, the estimate will be a function of N random variables. Let�θ N denote an
estimate. In general, one would like to have the estimate to be equal, on the average, to the
true value. The difference between the true value, θ, and the expected value of the estimate is
called bias given by
 

                                                                 { }B E N= −θ θ�                                                   (4.13)

 

 where B is the bias and E{ •} denotes the expectation operation. If B = 0, the expected value
of the estimate will be equal to the true value,
 

                                                                          { }E N
�θ θ=                                                       (4.14)

 

 and the estimate is said to be unbiased. If B ≠ 0, �θ N  is said to be biased. In practice, it could
be difficult to fulfill this requirement in some cases. It is then somewhat sufficient to consider
the bias in an asymptotic sense, i.e. if an estimate is biased but bias goes to zero as the
number of observed data goes to infinity, the estimate is then called asymptotically unbiased,
 

                                                                 { }lim �
N

NE
→∞

=θ θ                                                   (4.15)

 
 Obviously, it is desired to have an estimator being either unbiased or asymptotically unbiased.
 

 4.2.2 Consistent estimator
 

 To ensure that the estimate will converge to the true value, it is also required that the
variance of the estimate should go to zero as the number of observations goes to infinity

 

                                   { } { }{ }lim � lim � �
N

N
N

N NVar E E
→∞ →∞

= − =θ θ θ
2

0                         (4.16)

 

 If �θ N is unbiased, { }E N
�θ θ= , it follows from Tchebycheff inequality [17] that, for any δ > 0

 

                                                        [ ] { }
P

Var
N

N�
�

θ θ δ
θ

δ
− ≥ ≤ 2                                          (4.17)
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 Consequently, if the variance goes to zero as N → ∞ , the probability that �θ N differs by more

than δ from the true value will go to zero. In this case, �θ N is said to converge to θ  with
probability one. Another scheme of convergence is mean-square convergence, i.e. an estimate
�θ N is said to converge to θ  in the mean-square sense if

 

                                                              { }lim �
N

NE
→∞

− =θ θ
2

0                                             (4.18)

 
 No matter which definition is used, the estimator is said to be consistent if it is at least
asymptotically unbiased and has a variance approaching to zero as N goes to infinity. Note
that, a consistent estimator exists which is always either unbiased or asymptotically unbiased,
but an unbiased estimator exists which is not necessary to be consistent.
 

 4.2.3 Efficient estimator
 

 Practically, it is of importance not only to have small errors, but also to have small
uncertainties on the estimate. That is, a biased estimator with a small uncertainty is
sometimes preferable to an unbiased estimator with a large uncertainty. The variations of an
estimate resulting from the presence of noise in the system can be described by the covariance
matrix. The variations of individual parameters appear on the diagonal, whereas the off-
diagonal represents relation between parameter pairs.
  Consider two unbiased estimators P1 and P2 with mean value Pe and covariance
matrices CP1 and CP2 which is given by
 

                                                       { }C E P P P PP e e
T

1 1 1= − −( )( )                                     (4.19)

                                                      { }C E P P P PP e e
T

2 2 2= − −( )( )                                    (4.20)

 

 Accordingly, an estimator P1 is more efficient than an estimator P2 if CP1 ≤ CP2.
 

 4.2.4 Robust estimator
 

 So far, the estimate has been made based on the assumption that the noise is a
stationary white noise process. In some applications, this assumption may not be valid.
However, if some properties of an estimate are still valid in such applications, we shall call it
a robust estimator. This is crucial in practice because most estimators are used in situations
where some usual assumptions are not true. As a result, if it can be proved that an estimator
robust with respect to the consistency, then one can guarantee that it will converge to the true
value as the number of measurements increases.
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   5. Linear Model Structures
 

 
 

 In this section, a model of the acoustic echo generating system is described. Several
traditional linear model structures are introduced.
 
 

 5.1 Model of the Acoustic Echo Generating System
 
 The echo generating system can be approximately described by the linear model
structure. To deal with the problem of estimating the acoustic echo path, we first assume that
the echo path is linear and stationary for a short time interval. Although there exist some non-
linearity characteristics presented in the system, the assumption of linearity still gives rise to
satisfied results depending on an amount of non-linearity of the system. It is difficult to gain a
deep insight about the echo generating system for each specific purpose. Consequently, it is
suitable to model the system by using a black box model approach which is mainly based on
observed input signal u(t) and output signal y(t). The task is to estimate the impulse response
of the unknown system (echo path), since if the system is linear, its impulse response will
then completely represent it.
 Supposing that the measured output signal is given by the echo r(t) corrupted by the
near-end disturbance x(t), i.e.
 
                                           y t r t x t( ) ( ) ( )= + ,   where r t H u te( ) ( )= ∗                                (5.1)

 

 where ∗ denotes the convolution operation, and He is the transfer function of the true echo
path. The echo generating system is shown in Fig.5.1.
 

 

He True echo path

u(t)= Far-end signal

y(t)= Measured output signal

r(t)= “True” echo

x(t)= Near-end disturbance

 
 Figure 5.1: The echo generating system.

 
 Since one cannot know the true echo signal, the purpose of modeling is to find out the
model that can properly reproduce the true echo signal, given the input signal. It is not
possible to exactly obtain the model of true system He. Hence, it is appropriate to introduce
modeling error, εm(t), in an estimated echo signal, �( )r t , to represent the true echo signal as
shown in Fig.5.2. This modeling error can be used to determine how fit the estimated model,
H, could be. If εm(t) is equal to zero, then we have succeeded in modeling the true echo path.
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H Estimated model of the true echo path

u(t)= Far-end signal

y(t)= Measured output signal

r(t)= “True” echo

x(t)= Near-end disturbance

�( )r t         = Estimated echo

 εm(t) = Modeling error

 
 Figure 5.2: An estimated model H with modeling error.

 
 

 5.2 Review of Linear Model Structure
 
 Again, the stable LTI system can be adequately modeled by a linear black box model

structure as given in Eq.(3.1). Its graphical representation associated with the echo generating
system is depicted in Fig.5.3.
 

 

u(t-nk)= Far-end signal

B q

F q

( )

( )

w(t) = white noiseC q

D q

( )
( )

1

A q( )

 εm(t) = Modeling error

y t0 ( )  y(t) = measured output signal

Estimated model  H

� ( )r t

x t0 ( )

 
 Figure 5.3: A general linear model structure.

 
 where y0(t) is considered to be the optimum estimated output that can be obtained within a
specific model class and a fixed model size. Note that, A(q) represents the poles that are
common between the input and the noise. Similarly, F(q) corresponds to the poles that are
unique for the input, whereas D(q) determines the poles that are unique for the noise.

 The advantage of this model is that the effect of disturbance is also taken into
consideration to obtain a more accurate result. That is, since the actual near-end disturbance x
(t) is unknown, it is often more convenient to model x(t) as being obtained by filtering a white
noise source w(t) through a linear filter [C(q)/(D(q)A(q))]. The modeling error εm(t) represents
the inability of the proposed model structure to correctly describe the relationship between the
input and the output. Herein, three basic linear model structures−FIR, ARX and OE− are
presented.
 
 

 5.2.1 The Finite Impulse Response model structure (FIR)
 
 FIR model is a widely used model structure to describe the system of interest due to

its simplicity and stability. It is a special case of Eq.(3.1) when A(q) = C(q) = D(q) = F(q) = 1
which can be expressed as
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                                      y0(t)  =   B q u t nk w t( ) ( ) ( )− +                                                         (5.2)

                                               =  b q u t nk w tk
k

k

nb
−

=
− +∑ ( ) ( )

1

                                               =  ( . .. ) ( ) ( )b q b q b q u t nk w tnb
nb

1
1

2
2− − −+ + + − +

                                               =  b u t nk b u t nk b u t nk nb w tnb1 21 2( ) ( ) ... ( ) ( )− − + − − + + − − +
 
 where the parameters, bk for k = 1,2,...,nb, represent the magnitude of truncated system
impulse response, and the signal w(t) is assumed to be uncorrelated with the input signal u(t).
Fig.5.4 illustrates the FIR model. Observe that, the signal w(t) can be perceived as the near-
end speaker’s speech signal and/or unknown disturbance.
 

 
 εm(t)= Modeling error

u(t-nk)

B(q)

w(t)y t0 ( )y(t)

Estimated model  H

�( )r t

 
 Figure 5.4: The FIR model structure.

 
 In the view of the prediction error, the predicted signals are mainly based on the old

inputs. They are usually called the regressors of the model and can be collected in a
regression vector, ϕ(t) = [u(t-nk-1) u(t-nk-2) ... u(t-nk-nb)]T. The parameter vector to be
estimated can be written as θ  = [b1 b2 ... bnb]

T.
 Obviously, FIR model is suitable to represent the echo path because it does not model

the signal w(t) which is considered as the desired signal in this thesis project. However, it
leads to a large number of estimated parameters in order to obtain an accurate approximation.
 

 5.2.2 The Auto Regressive model structure with an eXternal input (ARX)
 

 This model structure can be derived from Eq.(3.1) by setting C(q) = D(q) = F(q) = 1.
In this case, the poles represented by A(q) can be possibly used to model the system with less
number of parameters. The output signal consists of an Auto Regressive part, A(q)y0(t), and
an eXternal input, B(q)u(t-nk), which is normally called the eXogenerous variable. The
mathematical expression can be given by
 

        A(q)∗y0(t) = B q u t nk w t( ) ( ) ( )− +                                             (5.3)

                                           a y t k b u t nk k w tk
k

na

k
k

nb

0
0 1

( ) ( ) ( )− = − − +
= =

∑ ∑

                                           y t a y t k b u t nk k w tk
k

na

k
k

nb

0 0
1 1

( ) ( ) ( ) ( )= − − + − − +
= =

∑ ∑
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 Manifestly, the output is a function of the old input and old output. The regression vector is
then given by ϕ(t) = [-y0(t-1) -y0(t-2) ... -y0(t-na) u(t-nk-1) u(t-nk-2) ... u(t-nk-nb)]T, and the
parameter vector is presented by θ  = [a1 a2 ... ana  b1 b2 ... bnb]

T. The ARX model is shown in
Fig.5.5.
 

 

u(t-nk)

B(q)

w(t)1

A q( )

y t0 ( )y(t)

Estimated model  H

�( )r t

 εm(t)= Modeling error

 
 Figure 5.5: The ARX model structure.

 
 Even though one may expect that the number of estimated parameters can be reduced
by using ARX model, it is not appropriate for modeling the echo path because the signal w(t)
will also be modeled by the poles from the polynomial A(q). As a consequence, ARX model
will not be considered in this thesis project.
 

 5.2.3 The Output Error model structure (OE)
 
 If the disturbance is assumed to be white sequences in the sense that it is uncorrelated

with the input signal, it is therefore sufficient to use the OE model to represent this unknown
system. This is because one can parameterize the transfer function independently, and the
number of estimated parameters can be reduced when compared with FIR model. The OE
model is depicted in Fig.5.6

 

 

u(t-nk)

B q

F q

( )

( )

w(t)
y t0 ( )y(t)

Estimated model  H

�( )r t

 εm(t)= Modeling error

 
 Figure 5.6: The OE model structure.

 
 This model can be realized from Eq.(3.1) when A(q) = C(q) = D(q) = 1, which can be

expressed as
 
                                               y t r t w t0 ( ) �( ) ( )= +                                                     (5.4)

                                               y t
B q

F q
u t nk w t0 ( )

( )

( )
* ( ) ( )= − +
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 or, equally,
 

                                      f y t k b u t nk k f w t kk
k

nf

k
k

nb

k
k

nf

0
0 1 0

( ) ( ) ( )− = − − + −
= = =

∑ ∑ ∑                      (5.5)

 
 Since f0 = 1, one obtains
 

                            [ ] [ ]y t w t b u t nk k f y t k w t kk
k

nb

k
k

nf

0
1

0
1

( ) ( ) ( ) ( ) ( )− = − − − − − −
= =

∑ ∑              (5.6)

 
 Since �( ) ( ) ( )r t y t w t= −0 , the Eq.(5.6) can be rewritten as a regression of measured inputs
and estimated outputs,
 

                                             �( ) ( ) �( )r t b u t nk k f r t kk k
k

nf

k

nb

= − − − −
==

∑∑
11

                                 (5.7)

 

 Therefore, ϕ(t) = [ u(t-nk-1) u(t-nk-2) ... u(t-nk-nb) -�( )r t −1  - �( )r t − 2 ... - �( )r t nf− ]T is a
regression vector and the parameter vector is defined by θ  = [b1 b2 ...bnb  f1  f2 ... fnf]

T.
 Clearly, OE model can be an efficient model for modeling the echo path because it
can reduce the number of estimated parameters, and it does not model the signal w(t).
Nonetheless, one may undergo some difficulties in using OE model for few reasons as
follows. Firstly, one cannot absolutely guarantee the stability of the system function in OE
model. Secondly, the presence of old predicted output in Eq.(5.7) prevents the use of a simple
linear solution to find the parameters bk and fk. As a result, we shall not consider the OE
model in this thesis project.
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   6. Orthonormal Bases for System Identification
 

 
 

 The traditional approaches, as discussed earlier, for modeling the system of interest
lead to the approximation of very high order in case of rapid sampling and/or dispersion in
time constant, which is closely related to the dominating pole of a true system. Such a high
model order cannot be acceptable in practice due to some difficulties in terms of performance
and hardware complexity. By exploiting a priori information about the dominating pole of the
system, more appropriate series expansions related to the use of orthonormal basis functions
are proposed [4]. These orthonormal functions are constructed by orthonormalizing a given
set of exponential functions. They are orthogonal in L2(0,∞), and form a complete set in L2

(0,∞) and L1(0,∞). Laguerre and two-parameter Kautz (or, more popularly, just “Kautz”)
functions are all special cases of orthonormal bases. Laguerre function is suitable for the
system with dominant first-order dynamics, whereas Kautz function is appropriate for the
system with dominant second-order resonant dynamics. They have indicated that the model
order can be substantially reduced when the dominating pole is chosen suitably. In this
section, Laguerre and Kautz functions are presented. The Laguerre and Kautz models can be
easily implemented with FIR and ARX structures by just replacing a traditional delay
operator of these structures with Laguerre and Kautz functions. We shall also introduce the
use of the two-stage echo canceller which consists of two stages, i.e. the first stage is a
conventional FIR model and the second one is a Laguerre or Kautz model.

 
 

 6.1 Motivation
 

 Consider a stable LTI system which is given by
 
                                     y t G z u t nk H z w t( ) ( , ) ( ) ( , ) ( )= − +θ θ                                  (6.1)

 
 where y(t), u(t), and nk are the output, input, and delay respectively. The noise w(t) is assumed
to be a stationary process with zero mean and unit variance. G(z,θ) and H(z,θ) are the set of
transfer function parameterized by the parameter vector θ for the input and the noise, where z
is the unit step delay ( z-1u(t) = u(t-1) ). Given N samples of observed data, by t we means the
time at the sampling instants t = kT, for k = 1,2,...,N, and T is assumed to be equal to 1 for
simplicity.
 By assuming that H(z,θ) is minimum phase to guarantee that H(z,θ)-1 is stable, and
normalized (H( , )∞ =θ 1), the optimal one-step ahead predictor of y(t) is thus defined as
 

                       [ ] [ ]�( , ) ( , ) ( , ) ( ) ( , ) ( )y t H z G z u t nk H z y tθ θ θ θ= − + −− −1 11                 (6.2)

 
 We shall assume that H z( , )θ  and G z( , )θ  have the same unstable poles. It then follows that

 

                                          H z G z( , ) ( , )θ θ−1  =  b zk
k

β ( )
=

∞

∑
1

                                      (6.3)
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                                              1 1− −H z( , )θ  =  a zk
k

β( )
=

∞

∑
1

                                         (6.4)

 

 where the basis function βk
kz z( ) = − , | z | ≥ 1, known as the delay operator. For a stable LTI

system, it is required that
 

                                                      bk
k=

∞

∑ < ∞
1

   and     ak
k=

∞

∑ < ∞
1

                                      (6.5)

 
 Practically, since both bk and ak tend to zero as k → ∞ , we may truncate these expansions at
k = n to adequately approximate the system with the finite number of estimated parameters.
Hence, Eq.(6.2) can be rewritten in a truncated series expansion as
 

                                         �( , ) ( ) ( ) ( ) ( )y t b z u t nk a z y tk k
k

n

k
k

n

kθ β β= − +
= =

∑ ∑
1 1

                         (6.6)

 

 By taking the parameter vector θ = [a1 a2 ... an b1 b2 ... bn]T, the well-known ARX model
structure is derived. Setting ak = 0, for all k, leads to FIR model structure, or by taking bk = 0,
for all k, AR model structure is realized. In theory, the usefulness of the estimate is limited by
how fast the sums in Eq.(6.3) and Eq.(6.4) converge, i.e., the rate of the error terms
 

                                                           bk
k n= +

∞

∑
1

  and  ak
k n= +

∞

∑
1

                                                (6.7)

 
 tend to zero as n → ∞ . The rate of convergence is basically determined by the location of the
poles of G(z,θ) and the zeros of H(z,θ). Poles and zeros close to unit circle imply a slow rate
of convergence.
 If G(z,θ) and H(z,θ) are obtained by sampling a continuous time system, using a
sampling interval T, the continuous time poles and zeros, λ, are approximately mapped to the
discrete time poles and zeros at {e Tλ }for small T. Since most digital applications require a
high sampling rate, i.e.T → 0, one could get a serious problem of estimating this system due
to a very slow rate of convergence because the discrete time poles and zeros approach one.
Additionally, because the variance of an estimated model is proportional to the number of
estimated parameters, it is advantageous to use as few parameters as possible but still
guarantee an useful model. These problems have motivated to use an alternative operator
which is less sensitive to the location of poles and zeros. This is a consequence of the fact that
the delay operator has too short memory (only one sampling step). By introducing the
operator with longer memory, the number of estimated parameters necessary to obtain an
accurate approximation can then be reduced. This operator can be chosen as

 

                          β
ξk

k

z
z

( ) =
−
1

 = + + + +− − − −z z z zk k k
1 2 2 3 3 4ξ ξ ξ �                          (6.8)

 

 where the poles ξk are chosen according to a priori knowledge of the true system. It is
desirable to construct the orthonormal basis function based on this operator. The procedure of
a unifying construction of orthonormal bases can be seen in [8] and the result is given by
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 where a variety of poles at {ξ1, ξ2, ..., ξk} are incorporated. These basis functions are
orthonormal with respect to the following inner product [8]
 

                                      β β
π

β βi j i jT
z z

j
z z
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z
( ), ( ) ( ) ( )= =∫

1

2
0 ,   for i ≠ j                     (6.10)

 
 and have unit normalization
 

                                                             βk z( )
2

1= ,    for ∀k                                            (6.11)

 

 Several advantages [3] are attained from employing the orthonormal basis functions in
system identification problem. Firstly, they have transforms that are rational functions with a
very simple repetitive form. This allows their practical realization with concatenated blocks
as illustrated in Fig.6.1.  Secondly, the solution of transfer function estimation problems leads
to the normal equation having a diagonal structure. However, it holds only if the input is
white sequences. Furthermore, if the normal equation has a Toeplitz structure, much is gained
in terms of numerical algorithm, sensitivity, etc. Finally, as seen in Eq.(6.9), the orthonormal
basis function consists of a first order low-pass term and k-1 all-pass terms. Such all-pass
filters are favorable in terms of numerical sensitivity, and they are often recommended to use
in filter design.
 FIR, Laguerre and Kautz functions are all special cases of orthonormal basis
functions. Manifestly from Eq.(6.9), FIR function is realized by choosing ξk = 0 for all k.
Laguerre function is obtained when ξk = ξ, where ξ is real-valued and | ξ | < 1, for all k, while
Kautz function is generalized when the pole is chosen such that ξk = ξ, where ξ is complex-
valued and | ξ | < 1, for all k.
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 Figure 6.1: Discrete-time Orthonormal networks of order n   

 
 

 6.2 System Representation
 
 The problem of modeling an unknown system from a given set of observed input and
output is of importance in many fields of science. Suppose that the input-output relation of a
stable LTI system is given by
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                                 y t G z u t nk v t( ) ( ) ( ) ( )= − +0 ,      G z g zk
k

k

0 0

1
( ) = −

=

∞∑                     (6.12)

 
 where y(t), u(t), and nk, are the output, input, and delay respectively. The time shifts are
represented by the delay operator z-1u(t) = u(t-1). The complex-valued function G0(z), where z

∈ C, is the system transfer function. For stable systems gkk

0

1
< ∞

=

∞∑ , it implies that G0(z) is

analytic in | z | > 1 and continuous in | z | ≥ 1. The noise v(t) is assumed to be a stationary
process with zero mean and unit variance.
 System identification deals with the problem of finding the estimate of G0(z) from the
experimental data of {y(t), u(t)}, where t = 1, 2, ..., N. Theoretically, G0(z) can be represented
by an infinite number of given basis functions. In practice, a truncated series expansion, say
the nth order, is used to estimate G0(z) with the result that there is a truncation error. This error
can be minimized by a proper choice of basis function. In addition, the identification problem
can be simplified to a linear regression estimation problem if the model structure is a priori
linear in the parameters, i.e., if the model can be expressed as
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( ) ( )=
=

∑ β
1

                                             (6.13)

 
 where β k z( )  is a set of given basis functions and gk are the parameters to be estimated. The
least squares estimation method is then applied to find the optimal values of the model
parameters of lower order terms. Since the proper choice of basis function, βk(z), will give
rise to a considerable increase in the rate of convergence and a significant decrease in the
asymptotic variance of the estimated transfer function, this leads to accurate approximation
with less number of estimated parameters. Herein, we shall investigate only two special cases
of orthonormal basis functions, namely Laguerre and (two-parameter) Kautz functions.
 
 

 6.3 Discrete Laguerre Function
 

   The Laguerre function has been extensively studied in [4]. This function can be
obtained by the Gram-Schmidt orthogonalization process of the following sequences
 

                                         fk(t,ξ) = tkξt,     for t=0, 1, 2, 3, ... and k=1, 2, 3, ...                   (6.14)
 

 where | ξ | < 1 is called the (real-valued) Laguerre pole. Denote lk(t,ξ) the kth discrete Laguerre
function, thus
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 This set of function is orthonormal, i.e.
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 where δij  is the Kronecker delta function. The discrete Laguerre functions have z-transform
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 and form a complete orthonormal set in L2 norm. Additionally, it can also be obtained from
Eq.(6.9) by setting ξk = (real-valued)ξ for all k. Owing to the completeness of the Laguerre
functions, any real sequences belonging to L2 norm can be put in the form
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 where the Laguerre parameters can be obtained by
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 and Γ is a circle of radius higher than 1 and lower than 1/| ξ |. The estimated output can then
be written as
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 The realization of using discrete Laguerre functions has a structure sketched in Fig.6.2.

 Even if the performance of Laguerre model is much more better than that of FIR, it
still has some drawbacks in case of scattered dominating poles and resonant poles. Therefore,
the Laguerre model is extended and generalized to Kautz model which can cope with several
different possible complex poles.
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 Figure 6.2: Discrete-time Laguerre network of order n. Note that the first block

     is a low-pass filter and all other blocks are all-pass filters.
 
 

 6.4 Discrete Kautz Function
 

 The problem in system identification using Kautz function has been studied in [5].
Since the system in real applications is much more complicated than modeling it by using one
real-valued pole, it is necessary to use a complex-valued pole to characterize the resonant part
of the system. To incorporate a complex pole, it is essential to recast the formulation in Eq.



 6. Orthonormal Bases for System Identification                                                                                                    36

(6.9), since as soon as one pole, say ξj is chosen as a complex pole, then the impulse
responses for the βk(z) for k > j become complex, and this is physically unacceptable in a
system identification problem. To avoid this problem, one needs to include its complex-
conjugated pole automatically whenever one complex-valued pole is chosen in Kautz basis
function. The detail of deriving Kautz basis function can be seen in [8].

 Given the nth model order, the truncated Kautz series expansion can be written as
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 where the Kautz basis function is given by
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, for which | αk | < 1 and  | γk | < 1,                        (6.26)

 

 and ξk is a complex-valued pole. In this thesis project, we shall consider only two-parameter
Kautz functions where ξk is chosen equal to (complex-valued) ξ, for all k. On account of an
orthonormal property, the Kautz parameters {g2k-1, g2k} can be determined by the projection
on the basis functions, i.e. g2k-1 = 〈G(z),Ψ2k-1(z)〉 and g2k = 〈G(z),Ψ2k(z)〉. The discrete Kautz
network can be simply represented in concatenated blocks as illustrated in Fig.6.3. For higher
order properties such as convergence of generalized covariance functions, error bound,
consistency, asymptotic variance, etc., one can read in [6].
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 Figure 6.3: Discrete Kautz Network of order n. The section Dk are sketched separately in the right picture.
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 6.5 Implementation of Orthonormal Basis function
 
 It is simply to construct the orthonormal model with FIR and ARX structure. The idea
is just to replace the traditional delay operator with the corresponding orthonormal basis
function. The construction can be shown as follows.
 

 6.5.1 Orthonormal model with FIR structure
 
 FIR structure is a widely used model structure to represent the system because it is

easy to implement and inherently stable. The general form of FIR model is
 

       y t G z u t nk v t( ) ( ) * ( ) ( )= − +                                    (6.27)
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and the noise v(t) is assumed to be white sequences. By replacing G
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, the Laguerre model is realized if βk(z) corresponds to Eq.

(6.17), and the Kautz model is derived if βk(z) is equal to Eq.(6.22) - Eq.(6.23). The estimated
output can then be written as
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 Given N samples of the observed output and input data, Eq.(6.28) can be rewritten in matrix
form
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 Thereby, the regression vector is given by ϕ(t) = [ β1(z)u(t-nk) β2(z)u(t-nk) ... βnb(z)u(t-nk) ]T,
for t = 1, 2, ..., N, and the parameter vector is represented by θ  = [g1 g2 ... gnb]

T. The
parameter vector can be solved by means of an off-line method in the least squares sense as
discussed earlier.
 

 6.5.2 Orthonormal model with ARX structure
 
 Although the ARX model is not considered in this thesis project, it is noteworthy to

point out that the realization of orthonormal model with ARX structure is similar to that with
FIR structure except having some terms contributed from the output signal. Let na and nb be
a number of output and input parameters to be estimated respectively, thereby the estimated
output is given by
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 which can be written in matrix form
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 In this case, the regression vector is determined by ϕ(t) = [-β1(z)y(t)  -β2(z)y(t) ... -βna(z)y(t)  β
1(z)u(t-nk)  β2(z)u(t-nk) ... βnb(z)u(t-nk)]T and the parameter vector is defined by θ  = [a1 a2 ...

ana b1 b2 ... bnb]T. The solution to find the parameters, ai (i=1,2,...,na) and bj (j=1,2,...nb) is
therefore identical to that of orthonormal model with FIR structure.
 
 

 6.6 Two-Stage Echo Canceller
 

 The typical echo impulse response can be decomposed into 2 parts, namely the first
part which normally has a rapid time variation, and the second part known as the tail of the
impulse response which is slowly decaying towards zero. By exploiting the characteristics of
such an echo impulse response, an approach of using a two-stage echo canceller is introduced
[9]. Its purpose is to reduce the number of estimated parameters as well as the computational
complexity of an echo canceller algorithm, particularly in case of the echo response with a
long tail. This can be done by dividing the structure of an echo canceller into two stages. The
first stage is a conventional transversal FIR filter that spans for the first few parameters of the
echo impulse response, while the second stage approximates the remainder or tail of the
response by a linear combination of orthonormal functions. In other words, the tail may be
well approximated by combining a few parameters, whereas a conventional transversal FIR
filter representation will involve far more parameters. As a result, if the number of estimated
parameters in an orthonormal model is not large, a substantial reduction in the model order
and the computational complexity can be achieved.

 Fig. 6.4 shows the two-stage echo canceller which is divided into two parts. The first
is a conventional transversal FIR filter with nb tap parameters, bk for k = 1,2,...,nb, which
approximate the first nb of the first part of the echo impulse response. The second is an
orthonormal model with na parameters, gk for k = 1,2,...,na, which are used to approximate
the tail portion of the echo response. Note that, the orthonormal model can be either Laguerre
model or Kautz model.
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 Figure 6.4: The two-stage echo canceller

 
 The estimated output is therefore given by
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where βk z( )  are the orthonormal basis functions, for k = 1, 2, ..., na, corresponding to Eq.
(6.17) for Laguerre function and to Eq.(6.22)-Eq.(6.23) for Kautz function. The Eq.(6.30) can
also be expressed in matrix form,
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 Consequently, the regression vector is given by ϕ(t) = [ u(t-nk-1) ... u(t-nk-nb)  β1(z)u(t-nk-nb)
... βna(z)u(t-nk-nb) ]T, and the parameter vector is θ  = [b1 ... bnb  g1 ... gna]T which can also be
solved by the least squares method.
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   7. Optimum Choice of Dominating Pole
 

 
 
 Any stable LTI system can be modeled by an infinite series of orthonormal functions

which involve a free parameter, closely related to the dominating pole. Theoretically, when
infinitely many parameters are employed in the expansion, the choice of a dominating pole is
somewhat arbitrary. In practice, however, a truncated series expansion is used and results in
the truncation error. This error is basically a function of the model order and its dominating
pole. For a fixed model order, there exists an optimal dominating pole that minimizes the
truncation error. Hence, the choice of a dominating pole plays an important role in the quality
of an approximation of the system by Laguerre and Kautz models. The selection of a good
dominating pole is then a crucial problem. If this parameter is chosen appropriately, the
Laguerre and Kautz models can efficiently approximate a large class of linear system with
less number of estimated parameters when compared with FIR model. Three approaches are
presented here to determine the optimal dominating pole. Each approach has its own
advantage in the sense of complexity and performance. Finally, a remarkable suggestion on
model reduction by means of the orthonormal model is also given.
 
 

 7.1 Based on a Given Set of Impulse Responses
 

 This method was firstly introduced in [23] which requires the knowledge of the
impulse responses of the system. It is used merely for Laguerre model where the dominating
pole is restricted to be real-valued. The key idea can be summarized as follows.

 In theory, any stable LTI system (which usually contains at least one unit delay) can be
exactly represented by an infinite sum of discrete Laguerre function which is given by
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 where Lk(z,ξ) is given in Eq.(6.17), gk is the Laguerre parameters to be estimated, and ξ is
called the Laguerre pole where | ξ | < 1. The corresponding time domain signal lk(t,ξ) is the
inverse z-transform of Lk(z,ξ). Since each Laguerre function is realizable as the unit impulse
response of a stable LTI system, one can express such  a unit impulse response, h(t), in terms
of Laguerre sequences as
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 Nevertheless, the truncated Laguerre series expansion is employed in practice to model a
system, and the least squares estimation method will be able to obtain the suitable values of
Laguerre parameters. Herein, we shall therefore introduce the optimal Laguerre pole, ξ, which
minimizes the following performance index,
 



 7. Optimum Choice of Dominating Pole                                                                                                               41

                                                                     J kgk
k

=
=

∞

∑ 2

1

                                                      (7.3)

 
 This performance index is selected because it linearly increases the weight of each additional
Laguerre parameter. To obtain a fast convergence rate in Eq.(7.3), the rate showing that the
coefficients of higher order Laguerre functions go towards zero, the minimum of performance
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 Given the unit impulse response, h(t), of a stable LTI system, we define
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 Here, M1, M2, and || h || depend on a given system. Observe that, M1 and M2 essentially
characterize the rate of decay and the smoothness of the impulse response of the system,
respectively. Therefore, we choose the Laguerre pole ξ such that the performance index [23]
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 is minimized. Thus we set the derivative of Eq.(7.7) with respect to ξ equal to zero, to obtain
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 For real-valued ξ, it follows that
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 The minimum performance index is
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 and the corresponding optimal Laguerre pole is given by
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 For any stable LTI system, it can be shown that [ ]( ) ( ) ( )4 2 11 2
2 2

0
M M h t h t h t

t
− − = + +

=

∞∑
which can not be negative, accordingly, 4M1M2 - M2

2 - 2M2 ≥ 0 is always true. Therefore, the
optimum Laguerre pole given in Eq.(7.11) is definitely a real value. See in [23] for proofs.

 If there is a time delay in the continuous system, the sampled system will have more
than one unit delay. The values of both M1 and M2 will then be affected by this delay. For the
system containing the delay d ( d > 1), we have to recast the solution in accordance with this
delay. Let us denote M1 and M2 by M1

(d) and M2
(d), respectively, thus
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 where D3 is independent of the delay d and is defined by:
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 When the delay is d, denote D1 = M1
(1) and D2 = M2

(1), the optimal Laguerre pole ζopt is also
derived from Eq.(7.11) where
 
                                                               M D d1 1 1= + −( )                                                 (7.15)

                                           M D d D2 2 32 1 1= + − −( )( )                                         (7.16)
 
 Note that D1, D2 and D3 depend only on the delay-free system.
        Clearly, the optimal Laguerre pole depends on characteristics of the system impulse
response, such as its rate of decay, its smoothness and the time delay. Note that, this method
does not consider about how large the model order should be in order to obtain an acceptable
approximation of the true system. This means that the optimal Laguerre pole deriving from
this method is just an approximation of the true dominating pole in asymptotic sense because
it is calculated from the whole set of given impulse responses. Then the optimal Laguerre
pole is primarily dependent of how good the given impulse response is. Furthermore, since
this optimum Laguerre pole will be used to evaluate the fit of error at every model order, one
can expect that the fit of error of Laguerre model with this pole may be worse than that of FIR
model at some model orders.
 
 

 7.2 Based on Minimizing the Loss Function
 
 Again, let the input-output relation of an estimated model of order n be represented by
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 where βk(z) corresponds to a set of chosen basis function, i.e. Laguerre or Kautz function, ϕ(t)
= [β1(z)u(t-nk) β2(z)u(-nk) ... βn(z)u(t-nk)]T and θ = [g1 g2 ... gn]T. Consequently, the least
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squares solution of θ is defined as the parameter �θ  that by minimizing the loss function as
given in Eq.(4.6), i.e.
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 Now let us introduce the following notation:
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 Given a stable LTI system, the loss function will be a function of the model order and its
dominating pole. For a fixed model order, there exists an optimal dominating pole that
minimizes the loss function. The optimal dominating pole is therefore chosen as the one that
minimizes the Eq.(7.18), which is simply equivalent to [2]
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 or, equally,
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 The solution in Eq.(7.23) can be either a real value or a complex value. Accordingly, this
method will be applied to find the optimal dominating pole for both Laguerre and Kautz
models. The resulting optimal dominating pole from this method is more effective than the
first method given in section 7.1 because it is derived by minimizing the Eq.(7.18) at each
model order.
 Nevertheless, the drawback of this method is that we need to use the search method to
find the optimal dominating pole at each model order. It is done by varying the value of ξ
within unit circle in order to retain the stability of a model, and choosing the pole that yields
the maximum value in Eq.(7.23). Since the matrix size of each element in Eq.(7.23) will be
proportional to the number of estimated parameters in orthonormal model, if one is required
to find the optimal dominating pole at very high order, it will take long time for solving Eq.
(7.23). Therefore, such wasted time can be viewed as the computational complexity, i.e. the
larger the matrix size, the longer the wasted time, and then the higher the computational
complexity. Evidently, this method requires much higher computational complexity than the
first method. As a result, to avoid the computational complexity of calculating the optimal
dominating pole at very high order, one need to subdivide the whole interval of the pole into
smaller subintervals of more manageable size.
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 7.3 Based on the Derivative of the Squared Error Equation
 
 For a fixed model order, the squared error (SE) equation given in Eq.(4.4) will be a
function of a dominating pole. Herein, we shall derive an optimal dominating pole for both
Laguerre model and Kautz model by setting the derivative of their SE equation with respect
to the dominating pole equal to zero. In general, the methods for deriving the optimal
dominating pole for Laguerre and Kautz functions are in essence identical. More details about
the optimality condition of Laguerre model can be read in [15], [16], [18], [21] and [22],
while that of Kautz model can be seen in [1].
 

 7.3.1 Optimality condition of discrete Laguerre model
 
 Since the impulse response of any stable LTI system can be represented by a sum of

exponential terms (time polynomials), e.g. h t Ai i
t

i

0

1
( ) =

=

∞∑ ξ  where Ai>0 and 0<ξi<1 are

real numbers, it seems reasonable to use basis functions of the same type to model this
impulse response. The main problem of an approximation is a suitable choice of the exponent
of the exponential, which is referred to as a dominating pole, because the squared error (SE)
surface of an approximation is a function of this parameter.

 Suppose the input-output relation of the true system is given by
 

                                                          y t h m u t m
m

( ) ( ) ( )= −
=

∞

∑ 0

1

                                           (7.24)

 
 where y(t) and u(t) are output and input sequences, and h0(t) is the true unit sample response.
Consider the case where the unit sample response h0(t) is represented by a set of orthonormal
sequences {φk(t)} such that
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 where

                                                             g h t tk k
t

=
=

∞

∑ 0

1

( ) ( )φ                                                 (7.26)

 
 is the kth coefficient of the series expansion. Herein, we shall consider only the case of
Laguerre model where the sequences {φk(t)} are replaced by the Laguerre sequences {lk(t,ξ)}
as given in Eq.(6.15).

 However, the truncated Laguerre series expansion, say the nth order Laguerre model, is
used in practice with a result that there is a truncation error. An approximation of the true unit
sample response h0(t) can then be expressed as
 

                                                        h t g l t h tk k
k

n

( ) ( , ) ( )= ≈
=

∑ ξ
1

0                                        (7.27)

 
 If this approximation turns into an equality, the function h0(t) is said to be within the model
set. Due to the orthonormal property, the squared error (SE) can be defined as the squared
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value of a discrepancy between the true impulse response h0(t) and the estimated impulse
response h(t) which can be written as
 

                                                           [ ]ε ξ( , ) ( ) ( )t h t h t
t

= −
=

∞

∑ 0 2

1

                                      (7.28)

 

 Since the Laguerre sequences {lk(t,ξ)}  are orthonormal, it is straightforward to show that Eq.
(7.28) is equivalent to
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                                     (7.29)

 
 For a given stable LTI system, the SE will be a function of the model order and its dominating
pole. Hence, for a fixed model order, there exists the optimal Laguerre pole that minimizes ε
(t,ξ) or maximizes gkk

n 2

1=∑ , i.e. the optimal Laguerre pole is defined as
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 or, equally,
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 In order that Eq.(7.31) attains the maximum, we set the derivative of it with respect to ξ equal
to zero, to obtain
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 Based on the orthonormal property, it is easily to show that [15]
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 The optimal Laguerre pole ξ that minimizes the squared error in Eq.(7.30) satisfies the
following equation,
 
                                                                      gngn+1 = 0                                                      (7.34)
 
 which has the roots
 
                                                         gn = 0    and/or   gn+1 = 0                                           (7.35)
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 Remarks:
• The problem of finding a minimum of ε(t,ξ) with respect to ξ reduces to finding the zeros

of either of the parameters gn or gn+1 as a function of (real-valued) ξ, and then checking
that the value of gngn+1 changes sign from positive to negative or vice versa as ξ increases.
If the sign of the product gngn+1 changes at roots of Eq.(7.34), the stationary point is either
a maximum or a minimum. Hence, the optimal value ξ can be obtained by determining

gkk

n 2

1=∑  at all possible values of ξ and choosing the one that makes gkk

n 2

1=∑ largest.

• According to Eq.(7.35), it tells us that we are looking for the value of ξ, which
corresponds to a zero of gn+1, otherwise the model order can be reduced to n, i.e. gn=0,
without any change in model accuracy.

7.3.2 Optimality condition of discrete Kautz model

An approximation of the true unit sample response h0(t) by a truncated Kautz series
expansion is given by

                                        h t g t g t h tk k k k
k

n

( ) { ( ) ( )} ( )
/

= + ≈− −
=

∑ 2 1 2 1 2 2
1

2
0ψ ψ                           (7.36)

where the Kautz sequences ψ2k-1(t) and ψ2k(t) are inverse z-transform of Ψ2k-1(z) and Ψ2k-1(z),
given in Eq.(6.23) and Eq.(6.24) respectively. The squared error given in Eq.(7.28) can be
simplified as
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The optimal Kautz pole is then defined as
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or, equivalently,
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where arg min and arg max are over the complex parameter ξ = α + jβ, where | ξ | < 1. In
order that Eq.(7.39) attains the maximum, we set the derivative of it with respect to the real
part, α, and to the imaginary part, β, of ξ equal to zero by using complex gradient operator,
such that
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where ℜ  and ℑ denote real and imaginary part, respectively. Eventually, the optimal solution
satisfying the Eq.(7.40) - (7.41) is given by [1]
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                                                                    gn-1 = gn = 0                                                   (7.42)

and/or

                                                                  gn+1 = gn+2 = 0                                                 (7.43)

Similarly, given the nth order Kautz model, the problem reduces to finding the zeros of
the product of consecutive Kautz parameters either (gn-1gn) or (gn+1gn+2). Having found a set
of all possible Kautz poles ξ, the optimal Kautz pole can then be obtained by determining
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n
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2

2
2

1

2

−=
+∑ /

at all possible values of ξ, and choosing the value that makes
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n

2 1
2

2
2

1

2

−=
+∑ /

maximum.

7.4 Suggestion on Model Reduction

So far, we have dealt with the problem of finding an optimal dominating pole for each
model order which leads to the minimum fit of error, regardless of how large the model order
is. Herein, we shall “just” give a remarkable suggestion on how to further reduce the order of
the proposed models given in section 6, but still retain an acceptable fit of error and hold
sufficient energy of the system.

Most applications are required to have the estimated model with the lowest possible
order according to some error criterion. This can be considered in terms of the energy of the
system in such a way that the model containing the maximum energy with less number of
estimated parameters will be mostly chosen, irrespective of how large the fit of error is.
Clearly, this is a compromise between the model order and the fit of error that one should
take into consideration for each specific purpose. The energy is usually contained in the
impulse response of the system. Let h(t) be the system impulse response. The energy can then
be calculated in the time-domain, in the frequency domain using Parseval theorem, or from
the expansion coefficients in orthonormal function given in Eq.(7.26), i.e.

                                                        E h t h t g
t

k
k

n

= =∗

=

∞

=
∑ ∑( ) ( )

1

2

1

                                      (7.44)

where (•)∗ denotes the conjugate operation. Two schemes for model reduction, namely the
threshold technique and the ordering of the poles, are presented here and their applications
will be demonstrated in section 8.

7.4.1 Threshold technique

This scheme was proposed by P. Bodin [19]. The concept can be summarized as
follows. The system which is represented by the sum of orthonormal bases will have nice
interpretation properties. For example, the energy of the system is always preserved in the
coefficient magnitudes of the basis functions, and the coefficient estimates remain the same
although some basis functions are discarded. Since the signal is usually contaminated with
unknown disturbances or noise of some kind, the basis function should be chosen as “far
away” as possible from the disturbances to be able to recover the signal correctly. Given the
suitable order of an orthonormal model which yields a minimum fit of error, one can take a
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close look at each coefficient magnitude. The coefficient magnitudes that are small compared
to the noise in each basis function can be set to zero or, in other words, thresholded. For
instance, if the noise is assumed to be white in the sense that it is equally distributed over all
possible basis functions, small coefficients can be considered to mostly consist of noise.
Therefore, it is a good idea to choose a basis that collects the information in a few large
coefficients and many small ones rather than the other way around. For a deep detail, one can
see in [19].

By applying the threshold technique over an estimated model, one obtains the suitable
model that has less number of estimated parameters but still holds adequate energy.

7.4.2 The ordering of the poles

Since the systems in reality normally have many poles and zeros, it is then a good idea
to incorporate a variety of poles in orthonormal model. Albertus [2] had proposed the solution
of model reduction by considering the ordering of the poles according to a criterion of the
system energy in such a way that the last sections contribute least or the first sections
contribute most to the overall energy of the system impulse response in quadratic sense.
However, he required a given set of possible poles which was estimated from the Prony’s
method [17] in order not to optimize over the poles within unit circle. See in [2] for more
details. To simplify our discussion here, we shall not require such a given set of possible
poles. Instead, each dominating pole will be chosen within unit circle based on the concept of
the ordering of the poles. This is of course a drawback of our modified method when
searching the dominating pole at each model order, especially at very high model order.
 The steps of choosing each dominating pole are as follows:
1.   Choose the first order section with a real-valued pole if
      a.   The absolute value of the weight associated with this pole is largest.
      b.   The squared absolute value of this weight is larger than the sum of squared absolute
             values of the weights of two additional first order sections for complex-conjugated
             pole pair.
2.  Select two additional first order sections either with a complex-conjugated pole pair or

with two real-valued poles if there is no real pole satisfying the previous condition. This
selection is as before based on a maximum additional energy.

3.  Go to the step 1 again to find the next dominating pole until the increment of an
additional energy is less than an acceptable level; for instance, an additional energy is
lower than 0.1 percent of the preceding energy.

Note that, in this thesis project, we shall not concern on how to employ these two schemes in
the real acoustic echo data to reduce the number of estimated parameters, because we are
focusing on the model leading to the minimum fit of error, based on the cross validation
approach.
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  8. Simulated Examples

In this section, three examples are given to demonstrate the performance of using the
Laguerre and Kautz models, compared to FIR model. They are all implemented with the FIR
structure. We have also introduced and examined the performance of using the two-stage
echo canceller in the third example. Furthermore, we have illustrated the use of the concept of
model reduction as given in section 7.4, where the threshold technique is applied in the first
two examples and the ordering of the poles is described only in the third example.

Example 1: Given a continuous time system being sampled with a rapid time sampling, we
shall investigate the performance of using Laguerre model, compared to FIR model.

Let the continuous time transfer function in s-domain be given by

                                                                 G s
s

( ) =
+
3

1
                                                        (8.1)

and be sampled with T = 0.1. The corresponding discrete time transfer function in z-domain
then has a pole located at 0.9048 {e(-1)(0.1)}, a statistic gain of 3 and the delay of 1. The system
is excited by white sequences as the input.
  Firstly, let us estimate the impulse response of this system using a FIR model of the
order 100 as shown in Fig.8.1.
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Figure 8.1: The estimated impulse response using a FIR model of the order 100.

By using the proposed method given in section 7.1, Eq.(7.11), to calculate the Laguerre pole
ξ, one obtain it equal to 0.9048. Undoubtedly, the resulting Laguerre pole is exactly equal to
the true discrete time pole because the system is the first order and has no disturbance.

Having found an optimal (Laguerre) pole, we shall compare the performance of using
the Laguerre model with FIR model. The 1st order Laguerre model with an optimal pole is
then compared with the 6th order FIR model. The bode plots of the true system, FIR model
and Laguerre model are illustrated in Fig.8.2.
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Figure 8.2: Bode plots (Magnitude and Phase) of transfer function approximations,
                                      where True system (X-mark), FIR (Circle) and Laguerre (Solid).

Obviously, only the 1st order Laguerre model with an optimal pole is quite close to the true
transfer function if compared to the 6th order FIR model.

Next, to evaluate the fit of error, let us define M12 model as the Laguerre model
where the optimal Laguerre pole is calculated from Eq.(7.11) and is used to compute the fit of
error at every model order. We shall compare the performance between M12 and FIR models
by using the cross validation approach. This is done by splitting the data into 2 different sets
which have 4000 samples each. The first one, ZE, is used to estimate the model parameters
and the other one, ZV, is used to calculate the fit of error based on the resulting model
parameters. The fit of error and the DB improvement of M12 model with a pole of 0.9048 are
compared with those of FIR model as illustrated in Fig.8.3, when ZE≠ZV.
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Figure 8.3:  Left: Fits of error between FIR model (X-mark) and M12 model with a pole of 0.9048 (Circle).
Right:  The DB improvement of M12 model with respect to a FIR model at each model order.

Secondly, let us now demonstrate the other methods given in section 7.2 to find the
optimal pole. The fits of error of FIR, M12 and Laguerre models are computed when ZE≠ZV
and ZE=ZV, as given in appendices A1 and A2 respectively. The plots of DB improvement of
the proposed models (M12 and Laguerre) with respect to a FIR model are depicted in Fig.8.4,
where DB = -20*log10(Fit of error of the proposed model / Fit of error of a FIR model).
Several conclusions can be drawn from these results. Firstly, the optimal pole obtained from
the first method given in Eq.(7.11) is sufficient to use for modeling a stable LTI system,
particularly when it is the first order system. Secondly, the second proposed method given in
section 7.2 in which the optimal pole is computed from Eq.(7.23) leads to a better
performance. This can be shown when the set of data ZV=ZE is used to calculate the fit of
error as depicted in the Fig.8.4 (Right) because it gives an optimal pole at each model order.
Accordingly, the second method given in section 7.2 is much more efficient to find the
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optimal pole than the first method given in section 7.1 as a consequence of the fact that the
optimal pole is dependent of the model order. Finally, as illustrated in the Fig.8.4 (Left), one
gains less DB improvement when the model order gets higher. This is because the correct
choice of an optimal pole is not crucial since the transfer function can be arbitrary well
approximated by an orthonormal model for any choice of pole ξ ( | ξ | < 1 ) by just increasing
the model order substantially large enough [6]. However, since the variance of an estimated
model is proportional to the number of estimated parameters, we shall therefore interest of
using as few parameters as possible but still give the reasonable approximation.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 20 30 40

Model  or der

D B

M12

Laguerre

 

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 20 30 40

Model  or der

D B

M12

Laguerre

Figure 8.4: The DB improvement of the proposed models with respect to a FIR model at each model order,
where the Left figure is for ZE≠ZV and the Right figure is for ZE=ZV.

Thirdly, we shall investigate the concept of model reduction based on the threshold
technique as given in section 7.4.1. Obviously, it is sometimes “preferable” to have the model
with as few estimated parameters as possible but still preserve the energy of the system
sufficiently, regardless of how large the fit of error is. Since the energy can be considered as
the magnitude of the estimated coefficients, let us plot the coefficient magnitudes of the 20th

order Laguerre model with a pole of 0.9763 (a Laguerre pole at the 20th order given in an
appendix A1) and with a pole of 0.9048 (a true pole), as shown in Fig.8.5.
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Figure 8.5: The coefficient magnitudes of the Laguerre model with pole 0.9763(Left) and 0.9048 (Right).

Based on the threshold technique, it is apparent that one may need about the 12th order
Laguerre model with a pole of 0.9763, whereas it is quite enough to use only the 1st order
Laguerre model with a pole of 0.9048. This is because the coefficient magnitudes that are
very small can be negligible according to the concept of model reduction.

Eventually, let us now increase the number of estimation/validation data from 4000
samples to 8000 samples and then evaluate the fits of error of FIR, M12 and Laguerre models,
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when ZE≠ZV. The fits of error are given in an appendix A3 and the plot of the corresponding
DB improvement up to the order of 40 for the data length of 8000 and 4000 samples is
depicted in Fig.8.6. Clearly, one obtains a better DB improvement when the data length
increases. This is a basic property of using the least squares method to estimate the model
parameters, i.e. the larger the data length used, the better the performance that we shall get
from an approximation. Furthermore, the optimal pole at each model order given in an
appendix A3 is slightly different from that given in an appendix A1 because the optimal
dominating pole calculating from Eq.(7.23) is also dependent of the data length.
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Figure 8.6: The DB improvement of the proposed models with respect to a FIR model at each model order,
                                         when ZE≠ZV with the data length of 8000 (Solid) and 4000 (Dashdot).

Example 2: Given the second order resonant system, we shall investigate the performance of
using Kautz model, compared to FIR, M12 and Laguerre models.

Consider the discrete time transfer function in z-domain

                                                         G z
z

z z
( )

. .
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− +
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− −

1

1 21 16 089
                                         (8.2)

which has the system poles located at 0.8±0.5i within the unit circle. The system is excited by
white sequences as the input.
 The estimated impulse response of this system using a FIR model of the order 200 is
given in Fig.8.7. By using the Eq.(7.11), one obtains the optimal Laguerre pole equal to
0.5562.
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Figure 8.7: The estimated impulse response using a FIR model of the order 200.
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The bode plots of the true system, the 10th order FIR model, and the 2nd order Laguerre model
with a pole of 0.5562 are shown in Fig.8.8. Similarly, by using the cross validation approach
(ZE≠ZV), the fit of error and the DB improvement of M12 model with a pole of 0.5562 is
compared to those of a FIR model as depicted in Fig.8.9.
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Figure 8.8: Bode plots (Magnitude and Phase) of transfer function approximations,
                                      where True system (X-mark), FIR (Circle) and Laguerre (Solid).
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Figure 8.9:  Left: Fits of error between FIR model (X-mark) and M12 model with a pole of 0.5562 (Circle).
Right: The DB improvement of M12 model with respect to a FIR model at each model order.

Even though the M12 model gives a better performance than FIR model, one can still obtain
higher improvement if the optimal pole is chosen as a complex value according to the true
dynamics. In this case, the 2nd order Kautz model with a pole of 0.8+0.5i is instead used. The
bode plots of the true system, the 10th order FIR model and the 2nd order Kautz model are
shown in Fig.8.10. It is evident that only the 2nd order Kautz model with a pole of 0.8+0.5i is
quite close to the true system. Fig.8.11 demonstrates the plots of the fit of error and the DB
improvement between a Kautz model with a fixed pole of 0.8+0.5i for every model order and
a FIR model, when ZE≠ZV.
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Figure 8.10 : Bode plots (Magnitude and Phase) of transfer function approximations,
where True system (X-mark), FIR (Circle) and Kautz (Solid).
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Let us now evaluate the fits of error of FIR, M12, Laguerre and Kautz models as given in an
appendix A4. Hence, the plot of the corresponding DB improvement of the proposed models
with respect to a FIR model up to the order of 40 is plotted in Fig.8.12, when ZE≠ZV.

0

10

20

30

2 4 6 8 10 20 30 40

Model  or der  

D B

M12

Laguerre

Kautz

 Figure 8.12: The DB improvement of the proposed models with respect to a FIR model at each model order.

Evidently, Kautz model give a better performance than M12 and Laguerre models, which are
all better than FIR model. In general, since any stable LTI system in reality is likely to be a
resonant system, Kautz model is preferable to model such a system because it requires less
number of estimated parameters.

Next, we shall demonstrate the effect of existing zero over the optimal dominating
pole. Let the system in Eq.(8.2) have the zeros located at 0.7±0.4i. The zeros will basically
cause the optimal pole location slightly changed to other positions. Therefore, the estimated
impulse response using a FIR model of the order 200 is again calculated, and it is used to
compute the optimal Laguerre pole from Eq.(7.11) which is equivalent to 0.4697. The fits of
error for FIR, M12, Laguerre and Kautz models according to this system are given in an
appendix A5. The plot of the corresponding DB improvement of the proposed models with
respect to a FIR model is sketched in Fig.8.13, when ZE≠ZV. Clearly, the proposed model is
still better than a FIR model. This is because the proposed methods to find the optimal
dominating pole as given in section 7 still give satisfied results.
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 Figure 8.13: The DB improvement of the proposed models with respect to a FIR model at each model order.

Finally, we shall again examine the concept of model reduction based on the threshold
technique as discussed in section 7.4.1. Let us consider the plot of coefficient magnitudes of
the 40th order Laguerre model with an optimal pole of 0.52 (given in an appendix A4), and
the 40th order Kautz model with an optimal pole of 0.67+0.42i (given in an appendix A4) and
with a pole of 0.8+0.5i (a true pole), as depicted in Fig.8.14.
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      Figure 8.14: The coefficient magnitude of the Laguerre model with a pole of 0.52(Left), the Kautz model
                           with a pole of 0.67+0.42i (Middle), and the Kautz model with a pole of 0.8+0.5i (Right).

Since the coefficient of Laguerre model at the order of 40 still contains some amount of the
system energy, it would then be difficult to use this Laguerre model of the order less than 40.
On the contrary, it seems that the whole system energy is kept in the coefficients up to the
order of 20 and 2 for Kautz model with a pole of 0.67+0.42i and 0.8+0.5i, respectively. As a
consequence, based on the threshold technique, only the 2nd order Kautz model with a pole of
0.8+0.5i is quite enough to model this system because the coefficient magnitudes at higher
orders are very small which can be neglected.

Example 3: We shall examine the performance of using the two-stage echo canceller,
compared to FIR, Laguerre and Kautz models.

Consider the discrete time transfer function in z-domain given by

               G z
z z z z z

z z z z z z
( )

( . )( . ) ( . . )

( . . ) ( . . )( . )( . )
=

+ − − +
− + + + + −

− − − − −

− − − − − −

1 1 1 4 1 2 2

1 2 2 1 2 1 1 2

1 05 1 0 6 1 12 0 4

1 16 089 1 14 0 74 1 0 2 1 0 9
       (8.3)
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which has several poles and zeros within the unit circle. The system is excited by white
sequences as the input. The estimated impulse response of this system using a FIR model of
the order 200 is shown in Fig.8.15. By using the Eq.(7.11), one obtains the Laguerre pole
equal to 0.0972.
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Figure 8.15: The estimated impulse response using a FIR model of the order 200.

As mentioned earlier, since the first part of this impulse response has a rapid time
variation, while the remainder or the tail of this impulse response is slowly decaying towards
zero, the model complexity can then be reduced if the tail can be modeled with less number
of estimated parameters. The two-stage echo canceller is therefore introduced for the purpose
of reducing the number of estimated parameters and the computational complexity. To
evaluate the performance of using the two-stage echo canceller, the first stage, a FIR model
with NB parameters, is then fixed at NB=30 and NB=50. The second stage is a Laguerre or
Kautz filter with NA parameters. The fits of error of FIR, M12, Laguerre and Kautz models
are given in an appendix A6, while the fit of error  of a two-stage echo canceller is illustrated
in an appendix A7. The plot of the corresponding DB improvement of the proposed models
with respect to a FIR model is shown in Fig.8.16, when ZE≠ZV.
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Figure 8.16: The DB improvement of the proposed models with respect to a FIR model at each model order

As shown in Fig.8.16, the performance of using the two-stage echo canceller has shown
satisfied results and it has gained in terms of reducing the computational complexity, when
compared with Laguerre and Kautz models. This is because the computational complexity
can be viewed as the matrix size of orthonormal model used for calculating the optimal pole
in Eq.(7.23). In addition, the two-stage echo canceller with Kautz filter as the second stage
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yields a better performance than that with Laguerre filter. Consequently, the two-stage echo
canceller is attractive method to model the impulse response of the system having a rapid
time variation at the beginning part of the impulse response and a slow decay towards zero at
the remainders.

Eventually, it is noteworthy to be pointed out here that, since the system given in Eq.
(8.3) has several poles and zeros, it is then a good idea to incorporate a variety of poles in an
orthonormal model. Let us now consider the concept of model reduction based on the
ordering of the poles as given in section 7.4.2. By using this scheme, one obtains the useful
orthonormal model with only the 11th order with 3 complex-conjugated pole pair and 5 real-
valued poles as given in table 8.1. Apparently, the fit of error at the 11th order orthonormal
model (0.0135) is close to that of the 50th order Kautz model (0.0140), given in an appendix
A6. When looking at the plot of coefficient magnitude of orthonormal model given in
Fig.8.17 (Left), we shall clearly realize that only the 11th order orthonormal model is possibly
sufficient to use because the coefficient magnitudes at higher orders are very small which can
be negligible.

In addition, it is also interesting to use the concept of model reduction on a two-stage
echo canceller. Since the first part of the impulse response, say at the order of 4, in Fig.8.15
has rapid time variation, we shall use the FIR model of NB=4 to represent this part and the
orthonormal model of the order that is resulted from the use of model reduction based on the
ordering of the poles. Table 8.2 shows the fit of error up to the order of 12. Obviously, at the
11th order, the fit of error in table 8.2 (0.0134) is close to that in table 8.1 (0.0135), but it
gains in terms of less computational complexity. The plot of coefficient magnitude is also
shown in Fig.8.17 (Right).

                            Table 8.1: Fits of error when ZE≠ZV with data length of 8000.
Model FIR Model Reduction

order Fit Pole DB

2 0.4431 0.2670 -0.70+0.50i 4.40

4 0.3664 0.1331 0.80+0.50i 8.79

6 0.3438 0.0355 0.80+0.50i 19.72

7 0.2856 0.0263 0.15 20.72
8 0.2696 0.0184 0.15 23.32
9 0.2692 0.0161 0.85 24.46

10 0.2663 0.0145 0.85 25.28
11 0.2311 0.0135 0.15 24.67

Remark:
• FIR  column contains the fit of error of FIR model at each model order.
• Model Reduction column is the orthonormal model where a variety of poles

                                     are incorporated in the model. For example, at the 4th order, it means that the
                                     ordering of poles is [ -0.70+0.50i, 0.80+0.50i ] and then use them to compute the fit
                                         of error.

 
 
 
 
 
 
 
 
                        Table 8.9: Fits of error when ZE≠ZV with data length of 8000 using
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 a two-stage echo canceller with NB=4.
 Model  FIR  Model Reduction
 order   Fit  Pole  DB

 1-4     
 6  0.3438  0.2589  -0.70+0.50i  2.46
 8  0.2696  0.1043  0.80+0.50i  8.25
 10  0.2663  0.0177  0.80+0.50i  23.55
 11  0.2311  0.0134  0.9  24.73
 12  0.2311  0.0126  0.9  25.27
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 Figure 8.17: The coefficient magnitude of a orthonormal model (Left) and a two-stage echo canceller (Right)

 
 Consequently, we can conclude the results from these three examples as follows.
Firstly, Laguerre and Kautz models yield a better performance than FIR model for a given
stable LTI system. Laguerre model is appropriate for the system with dominant first order
dynamics, whereas Kautz model is suitable for the system with dominant second order
resonant dynamics. Secondly, a proper choice of the optimal dominating pole will improve
the performance of the proposed model. The methods to find the optimal pole given in section
7 have shown satisfied results. Thirdly, the performance of a two-stage echo canceller is
comparable to that of Laguerre and Kautz models but it gains in terms of reducing the
computational complexity. Finally, the concept of model reduction has illustrated that the
model order of the proposed models can be further reduce but still hold sufficient energy of
the system at the expense of a higher fit of error. Evidently, this is a compromise between the
model order and the fit of error that one should take into account for each specific purpose.
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   9. Experimental Result on Real Acoustic Echo Data
 

 
 

 In this section, the process of generating and collecting the real acoustic echo data is
given. The performance of the proposed models given in section 6 is compared with that of a
FIR model.
 
 

 9.1 Process of generating and collecting the data
 
 Since the real acoustic echo data employed in this thesis project has been collected

from the system that is made as near stationary as possible in order to be able to use the off-
line method to estimate the values of the model parameters, it is noteworthy to explain the
process of generating and collecting the real acoustic echo data. Such a process can be
represented in Fig.9.1. The microphone is located approximately 80 cm from the loudspeaker
of high quality. The environment in which the recording is made is a hard acoustical room.
The dimension of the room is approximately 3 m by 6 m and the height is 3 m.

 

 

RECODER 
for

Input and Output

loudspeaker

microphone

An office room

White noise

y(t)

Amplifier

u(t)

Acoustic echo

 
 Figure 9.1: The process of generating an collecting the acoustic echo data

 
 The signal (white noise) of 10 ms is fed to the amplifier before being collected at the recorder
as the input signal, u(t), and transmitted to the loudspeaker. The signal is propagated in the
room and then reflected back to the microphone as acoustic echo which is collected by the
same recorder as the output signal, y(t). All signals collected at the recorder are sampled at 12
kHz. Nothing is moved in this room.
 
 

 9.2 Assumption
 

 To model the room impulse response based on a given set of observed input signal, u
(t) and output signal y(t), we shall firstly assume that the system (acoustic echo path) is linear
and stationary for a short time interval. Although there might be some non-linearity
characteristics presented in the system, the assumption of linearity still gives satisfied results
depending on an amount of non-linearity of the system. It is difficult to gain a deep insight
about the echo generating system for each specific purpose. As a result, it is suitable to model
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the system by using a linear black box model structure which is primarily based only on a
given set of experimental data. The task is then to estimate the impulse response of the system
(acoustic echo path), since if the system is linear, its impulse response will completely
represent it.
 
 

 9.3 Experimental result
 

 Let us estimate the impulse response of the acoustic echo path from the input-output
data as explained in section 9.1. The estimated room impulse response using a FIR model of
the order 3500 is shown in Fig.9.2. Clearly, the estimated impulse response is quite time
variation. Therefore, one might expect the difficulty to model this impulse response using a
FIR model because its model order is probably in the order of a few thousands.
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 Figure 9.2: The estimated room impulse response using a FIR model of the order 3500.

 
 Now we shall compare the performance of the proposed models as given in section 6

with that of a FIR model. The criterion used to evaluate the performance of each model is the
cross validation approach where ZE≠ZV. Each set of estimation/validation data of 8000
samples normalized by 15991 are employed in this thesis project. Several aspects are worth to
address here, such as how the segmented data used for estimation and validation affect the
resulting optimal dominating pole, and how large the data size used in an approximation
influences the fit of error and the optimal dominating pole.
 Firstly we shall investigate how the segmented data used for estimation and validation
affect the resulting optimal dominating pole. Three different segments of data are randomly
chosen. We shall use the segment of estimation data at ZE=10000:17999 and validation data
at ZV=20000:27999 as the reference set. The optimal dominating pole and the corresponding
fit of error from this data set are given in an appendix B1. The plot of the DB improvement of
the proposed models with respect to a FIR model is depicted in Fig.9.3. In addition, the
resulting optimal dominating pole given in an appendix B1 is used to calculate the fits of
error for the other two sets of segmented data which are given in an appendix B2 and the
plots of their DB improvement are sketched in Fig.9.4. As shown in Figs.9.3-9.4, the
performance of Laguerre and Kautz models is generally better than that of a FIR model.
Furthermore, one can adequately use the optimal dominating pole calculated from one
segmented data to evaluate the fit of error for the other segmented data.
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 Figure 9.3: The DB improvement of the proposed models with respect to a FIR model

 at each model order as the reference set when ZE≠ZV.
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                 Figure 9.4: The DB improvement for the other two sets of segmented data using the same

 dominating pole as given in an appendix B1 to evaluate the DB improvement when ZE≠ZV.
 
 Now let us recalculate the optimal dominating pole for each segmented data which is the
same as given in an appendix B2. The resulting dominating pole and the corresponding fit of
error are therefore illustrated in an appendix B3 and the plots of their DB improvement are
shown in Fig.9.5.
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 Figure 9.5: The DB improvement for the two sets of segmented data as given in an appendix B2
 using the new dominating pole recalculated from Eq.(7.23) to evaluate the DB improvement when ZE≠ZV.

 
 Evidently, the resulting dominating poles given in an appendix B3 are slightly different from
those given in an appendix B1. This is because the optimal dominating pole calculated from
Eq.(7.23) depends on the set of segmented data used in estimating the model parameters.
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 Next we shall examine how large the data size used in an approximation influences
the fit of error and the optimal dominating pole. The fits of error of two sets of data size, 4000
and 12000 samples, are shown in an appendix B4 by using the same dominating pole given in
an appendix B1 which was calculated from the data size of 8000 samples. The plots of DB
improvement for these two sets of data size are depicted in Fig.9.6, when ZE≠ZV. Noticeably,
the dominating poles computed from the data size of 8000 samples at each model order can
still be used for the data sizes of 4000 and 12000 samples. Using the data size of 12000
samples in an approximation yields a better performance than using the data size of 4000
samples. As a result, the larger the data size, the better the fit of error we shall get.
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 Figure 9.6: The DB improvement for two data sizes, 4000 samples (Left) and 12000 samples (Right),

 using the same dominating pole given in an appendix B1 to evaluate the DB improvement when ZE≠ZV.
 
 Now let us recalculate the dominating pole and the corresponding fit of error for each sets of
data size as given in an appendix B4. The results are shown in an appendix B5 and the plots
of DB improvement are illustrated in Fig.9.7.
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 using the new dominating pole recalculated from Eq.(7.23) to evaluate the DB improvement when ZE≠ZV.
 
 Similarly, the recalculated dominating poles are slightly different from those which are
derived from the data size of 8000 samples as given in an appendix B1. This is because the
optimal dominating pole calculated from Eq.(7.23) is also dependent of the data size used in
estimating the model parameters.
 Eventually, the performances of using Laguerre and Kautz models as well as the two-
stage echo canceller up to order 2000 are given in an appendix B6. The plots of their
corresponding DB improvement are depicted in Figs.9.8-9.9, when ZE≠ZV.
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 Figure 9.8: The DB improvement of M12, Laguerre and Kautz models with respect to a FIR model at each
model order when ZE≠ZV and the data length of 8000 samples.
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 Figure 9.9: The DB improvement of a two-stage echo canceller with respect to a FIR model at each
 model order when ZE≠ZV and the data length of 8000 samples.

 
 From Figs.9.8-9.9, we can roughly conclude the results as follows:
• The proposed models given in section 6 generally yield better performance than a FIR

model when the dominating pole is chosen properly at each model order. The methods to
find the optimal dominating pole as given in section 7 have shown satisfied results.

• The performance of a two-stage echo canceller is comparable to that of Laguerre and
Kautz models but it has gained in terms of reducing the computational complexity.

• We obtain small DB improvement on the real acoustic echo data by using the proposed
models given in section 6 if compared with a FIR model. This might be because the
system (acoustic echo path) may have some non-linearity and time variation.

 



 10. Conclusions                                                                                                                                                     64

 

   10. Conclusions
 

 
 
 As known in the literature, the effect of acoustic echo is quite complicated as
discussed in section 1. FIR model is widely used to model the room impulse response due to
simplicity and stability. However, it leads to the approximation of very high order, probably
in the order of 4000. By exploiting a priori information about the dominating pole of the
system, an approximation of the room impulse response by means of the Laguerre and Kautz
functions is proposed. In general, such a priori information about the dominating pole of the
system may sometimes not be available. To deal with this problem, we have presented three
methods to find such an optimal dominating pole in section 7.

 The first method given in section 7.1 is restricted only in the case of a real-valued
dominating pole, and it requires a given set of the system impulse response to calculate an
optimal Laguerre pole by minimizing the performance index J as given in Eq.(7.11). The
advantage of using such a performance index is that it forces rapid convergence of the
Laguerre spectrum and gives an analytical solution. The resulting optimal dominating pole
will primarily depend on the characteristics of the system impulse response, such as its rate of
decay, its smoothness and the time delay.

 The second method is much more efficient than the first one with an expense of the
higher computational complexity. This is because, since this method is based on minimizing
the loss function which is a function of the model order and its dominating pole, there exists
an optimal dominating time at each model order. The optimal dominating pole is needed to
calculate at each model order by Eq.(7.23) and its value can be either real-valued or complex-
valued depending on our intended use. The third method relies on the fact that the squared
error or loss function is a function of a dominating pole. The optimal dominating pole can
then be derived mathematically by setting the derivative of the squared error with respect to a
dominating pole equal to zero. Given the nth model order, the optimal condition of Laguerre
model is given in Eq.(7.34), while that of Kautz model is given in Eq.(7.42)-Eq.(7.43).
Obviously, the major shortcoming of these two methods is the necessity of subdividing the
whole interval of a dominating pole into smaller subintervals of more manageable size, in
order to avoid the computational complexity of approximation at very high order.

 According to the results in simulated examples given in section 8, when modeling a
stable LTI system, all proposed models discussed in section 6 have performed quite better
than a FIR model, especially for a Kautz model. Therefore, Kautz model seems to have large
potential in real applications such as in signal processing and in control system, because the
system in reality is likely to be resonant system. In addition, the performance of two-stage
echo canceller is comparable to that of Laguerre and Kautz models but it has gained in terms
of reducing the computational complexity. The concept of model reduction given in section
7.4 has also shown that the model order of the proposed models can be further reduce but still
preserve enough energy of the system at the expense of a higher fit of error. Evidently, this is
a compromise between the model order and the fit of error that one should take into
consideration for each specific purpose.

 Finally, we obtain small DB improvement on the real acoustic echo data by using the
proposed models if compared with a FIR model This might be because the system (acoustic
echo path) may have some non-linearity and time variation.
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    11. Suggestions for Future Works
 

 
 
 All proposed models given in section 6 and the methods used to find the dominating

pole given in section 7 have illustrated satisfied results. Their parameters is estimated and
solved by means of an off-line method in the least squares sense. Since the true echo path in
reality has some non-linearity and time variation, it might be difficult to obtain a large
improvement from modeling the true echo path by the proposed models, if compared with a
FIR model.

 In order to enhance and improve the performance of the proposed models, it is then
essential to deal with the problems of non-linearity and time variation. Hence, several future
works of interest should be suggested here as follows:

 

• Implement the proposed models in the neural network to deal with the non-linearity of the
true echo path.

• Apply the on-line method to estimate the model parameters used in the proposed models
in order to cope with a constraint of time variation of the true echo path.

• Investigate and expand the concept of model reduction, as described in section 7.4, in real
applications.
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   Appendix A (Used for section 8)

 

 
 
 A1:  Fits of error of the 1st order system when ZE≠ZV and data length of 4000 samples.  (Fig.8.4(Left))
 Model  FIR  M12 (0.9048)  Laguerre

 order   Fit  DB  Fit  Pole  DB
    1.0e-003 *    1.0e-003 *  (M12/FIR)    1.0e-003 *   (Laguerre/FIR)

 1  178.9000  0.7822  47.19  0.7856  0.9049  47.15

 2  161.9000  0.7737  46.41  0.7737  0.9050  46.41

 3  146.5000  0.7541  45.77  0.7541  0.9059  45.77

 4  132.6000  0.7356  45.12  0.7365  0.8890  45.11

 5  120.0000  0.7211  44.42  0.7211  0.8950  44.42

 6  108.5000  0.7070  43.72  0.7091  0.9321  43.69

 7  98.2000  0.6979  42.97  0.6972  0.8450  42.98

 8  88.9000  0.6877  42.23  0.6864  0.8239  42.25

 9  80.4000  0.6801  41.45  0.6812  0.9411  41.44

 10  72.8000  0.6708  40.71  0.6724  0.9350  40.69

 20  26.7172  0.6318  32.52  0.6330  0.9763  32.51

 30  9.7987  0.6251  23.90  0.6658  0.9750  23.36

 40  3.6444  0.6237  15.33  0.8591  0.9850  12.55

 
 Remark:
• FIR  column is the fit of error of a FIR model.
• M12(0.9048) column is the fit of error of Laguerre model which uses an optimal pole of 0.9048 derived

from Eq.(7.11) to calculate the fit of error at every model order.
• DB(M12/FIR) is the improvement of the fit of error between M12 and FIR columns which is calculated by

DB M FIR= −20 1210*log ( / ) .

• Laguerre column consists of three columns, i.e. Fit  column is the fit of error of Laguerre model according
to each optimal pole, Pole column is the optimal pole computed from Eq.(7.23), and DB(Laguerre/FIR) is
the improvement of the fit of error between Laguerre and FIR columns.

 
 
 A2:  Fits of error of the 1st order system when ZE=ZV and data length of 4000 samples.  (Fig.8.4(Right))

 Model  FIR  M12 (0.9048)  Laguerre

 order   Fit  DB  Fit  Pole  DB
    1.0e-003 *    1.0e-003 *  (M12/FIR)    1.0e-003 *   (Laguerre/FIR)

 1  173.4135  5.1140  30.61  5.1136  0.9049  30.61

 2  156.9210  4.6247  30.61  4.6247  0.9050  30.61

 3  141.9999  4.1838  30.61  4.1838  0.9059  30.61

 4  128.4885  3.7853  30.62  3.7852  0.8890  30.62

 5  116.2698  3.4246  30.62  3.4246  0.8950  30.62

 6  105.2122  3.0985  30.62  3.0985  0.9321  30.62

 7  95.1795  2.8033  30.62  2.8030  0.8450  30.62

 8  86.1095  2.5366  30.62  2.5365  0.8239  30.62

 9  77.9039  2.2954  30.61  2.2954  0.9411  30.61

 10  70.4811  2.0778  30.61  2.0776  0.9350  30.61

 20  25.8956  0.7829  30.39  0.7810  0.9763  30.41

 30  9.5107  0.3481  28.73  0.3356  0.9750  29.05

 40  3.5030  0.2397  23.30  0.0941  0.9850  31.42
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 A3:  Fits of error of the 1st order system when ZE≠ZV  with data length of 8000 samples.  (Fig.8.6)
 Model  FIR  M12 (0.9048)  Laguerre

 order   Fit  DB  Fit  Pole  DB

    1.0e-003 *    1.0e-003 *  (M12/FIR)    1.0e-003 *   (Laguerre/FIR)

 1  174.4000  0.3190  54.76  0.3158  0.9000  54.84

 2  157.8000  0.2923  54.65  0.2923  0.9000  54.65

 3  142.8000  0.2665  54.58  0.2665  0.9100  54.58

 4  129.2000  0.2434  54.50  0.2433  0.8900  54.50

 5  116.9000  0.2217  54.44  0.2221  0.9300  54.43

 6  105.8000  0.2019  54.39  0.2029  0.9300  54.34

 7  95.7000  0.1856  54.25  0.1853  0.8500  54.26

 8  86.6000  0.1694  54.17  0.1683  0.8400  54.23

 9  78.4000  0.1555  54.05  0.1555  0.9000  54.05

 10  70.9000  0.1409  54.03  0.1416  0.8700  53.99

 20  26.1000  0.0546  53.59  0.0590  0.9600  52.92

 30  9.6000  0.0290  50.39  0.0470  0.9800  46.20

 40  3.5000  0.0253  42.82  0.3277  0.9900  20.57

 
 
 A4:  Fits of error of the 2nd order resonant system when ZE≠ZV and data length of 4000 samples.  (Fig.8.12)
 Model  FIR  M12 (0.5562)  Laguerre  Kautz

 order   Fit  DB  Fit  Pole  DB  Fit  Pole  DB
    (M12/FIR)    (Laguerre/FIR)    (Kautz/FIR)

 2  1.0897  0.9815  0.91  0.9344  0.4550  1.34  0.0697  0.80+0.50i  23.88

 4  0.8933  0.7898  1.07  0.7358  0.4700  1.68  0.0568  0.80+0.50i  23.93

 6  0.8749  0.6355  2.78  0.5887  0.4970  3.44  0.0519  0.80+0.49i  24.54

 8  0.7525  0.5116  3.35  0.4725  0.5106  4.04  0.0489  0.79+0.51i  23.74

 10  0.6358  0.4114  3.78  0.3788  0.5188  4.50  0.0395  0.79+0.49i  24.13

 20  0.3583  0.1400  8.16  0.1290  0.5900  8.87  0.0236  0.75+0.45i  23.63

 30  0.2149  0.0483  12.97  0.0452  0.5000  13.54  0.0137  0.73-0.41i  23.91

 40  0.1220  0.0173  16.97  0.0162  0.5200  17.54  0.0073  0.67-0.42i  24.46

 
 Remark:
• Kautz column consists of three columns, i.e. Fit  column is the fit of error of Kautz model according to each

optimal pole, Pole column is the optimal pole computed from Eq.(7.23), and DB(Kautz/FIR) is the
improvement of the fit of error between Kautz and FIR columns.

 
 A5:  Fits of error of the 2nd order resonant system with zeros at 0.7±0.4i when ZE≠ZV  and data length of 4000
 samples.  (Fig.8.13)
 Model  FIR  M12 (0.4697)  Laguerre  Kautz

 order   Fit  DB  Fit  Pole  DB  Fit  Pole  DB
    (M12/FIR)    (Laguerre/FIR)    (Kautz/FIR)

 2  0.1444  0.1334  0.69  0.1243  0.5800  1.30  0.1205  0.61+0.26i  1.57

 4  0.1415  0.1201  1.42  0.1100  0.3500  2.19  0.0824  0.57+0.48i  4.70

 6  0.1215  0.0900  2.61  0.0826  0.6000  3.35  0.0462  0.67+0.37i  8.40

 8  0.1028  0.0698  3.36  0.0687  0.6000  3.50  0.0282  0.63+0.43i  11.23

 10  0.1008  0.0559  5.12  0.0543  0.5800  5.37  0.0184  0.67+0.37i  14.77

 20  0.0532  0.0204  8.33  0.0185  0.5200  9.17  0.0034  0.66+0.40i  23.89

 30  0.0283  0.0075  11.53  0.0063  0.5600  13.05  0.0018  0.66+0.41i  23.93

 40  0.0166  0.0026  16.10  0.0023  0.5342  17.17  0.0011  0.65+0.41i  23.57

 50  0.0098  0.0010  19.82  0.0009  0.6010  20.27  0.0006  0.65+0.45i  24.26

 
 Remark:
• The value (0.4697) in M12 column is the Laguerre pole calculated from Eq.(7.11). Clearly, it differs from

the previous one (0.5562) given in A4 because the zeros cause an optimal pole changed to another position.
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 A6:  Fits of error of the system given in Eq.8.3 when ZE≠ZV  with data length of 8000 samples.  (Fig.8.16)
 Model  FIR  M12 (0.0972)  Laguerre  Kautz

 order   Fit  DB  Fit  Pole  DB  Fit  Pole  DB
    (M12/FIR)    (Laguerre/FIR)    (Kautz/FIR)

 2  0.4431  0.4664  -0.45  0.3904  -0.3000  1.10  0.2666  -0.71+0.50i  4.41

 4  0.3664  0.3549  0.28  0.3044  -0.3800  1.61  0.2655  -0.63+0.48i  2.80

 6  0.3438  0.3538  -0.25  0.2758  -0.6000  1.91  0.2637  -0.64+0.37i  2.30

 8  0.2696  0.2818  -0.38  0.2564  -0.2300  0.44  0.2564  -0.23  0.44

 10  0.2663  0.2375  0.99  0.2373  0.1000  1.00  0.2361  0.10+0.15i  1.05

 20  0.1780  0.1514  1.41  0.1371  0.2000  2.27  0.1339  0.21+0.13i  2.47

 30  0.1191  0.0992  1.59  0.0677  0.3889  4.91  0.0663  0.35+0.27i  5.09

 40  0.0776  0.0624  1.89  0.0318  0.3200  7.75  0.0308  0.34+0.25i  8.03

 50  0.0525  0.0374  2.95  0.0145  0.3100  11.18  0.0140  0.36+0.14i  11.48

 60  0.0353  0.0214  4.35  0.0066  0.3100  14.56  0.0065  0.35+0.14i  14.70

 70  0.0219  0.0118  5.37  0.0031  0.3600  16.98  0.0029  0.35-0.15i  17.56

 80  0.0129  0.0065  5.95  0.0014  0.3600  19.29  0.0014  0.36-0.07i  19.29

 90  0.0079  0.0037  6.59  0.0007  0.3534  21.38  0.0007  0.35-0.08i  21.05

 100  0.0051  0.0021  7.71  0.0004  0.3482  23.18  0.0003  0.35-0.08i  24.61

 
 
 A7:  Fits of error of the system given in Eq.8.3 when ZE≠ZV  with data length of 8000 samples.  (Fig.8.16)
 Model  Two-stage echo canceler with NB=30  Two-stage echo canceler with NB=50

 order  Laguerre  Kautz  Laguerre  Kautz

 (NA+NB)  Fit  Pole  DB  Fit  Pole  DB  Fit  Pole  DB  Fit  Pole  DB

 1-30             
 40  0.0538  0.53  3.18  0.0070  0.77+0.46i  20.90       
 50  0.0233  0.59  7.06  0.0045  0.65+0.45i  21.34       
 60  0.0097  0.54  11.22  0.0031  0.64+0.45i  21.13  0.0223  0.46  3.99  0.0018  0.77+0.50i  25.85

 70  0.0039  0.55  14.99  0.0016  0.56+0.40i  22.73  0.0090  0.51  7.72  0.0011  0.71+0.47i  25.98

 80  0.0016  0.50  18.13  0.0009  0.50+0.35i  23.46  0.0037  0.59  10.85  0.0006  0.69+0.42i  26.65

 90  0.0007  0.56  20.61  0.0005  0.50+0.24i  23.94  0.0014  0.53  15.03  0.0004  0.62+0.39i  25.91

 100  0.0003  0.50  23.43  0.0003  0.46+0.27i  25.01  0.0006  0.60  18.59  0.0003  0.60+0.40i  25.83

 
 Remark:
• Two-stage echo canceller is implemented by using the first stage as a FIR model with NB parameters and

the second stage as Laguerre or Kautz filter with NA parameters. Thus the total model order is equivalent to
NB+NA parameters. The optimal pole can be computed in the same manner where the regression vector is
modified in accordance with the discussion given in section 6.6.
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  Appendix B (Used for section 9)

B1:  Fits of error as the reference set when ZE≠ZV and the data length of 8000 samples.  (Fig.9.3)
Model [8000]  ze=(10000:17999) & zv=(20000:27999)

order FIR M12 (0.0812) Laguerre Kautz

Fit DB Fit Pole DB Fit Pole DB

2 0.2094 0.2094 0.0000 0.2073 -0.7033 0.0875 0.1895 0.80+0.50i 0.8673

10 0.1463 0.1371 0.5641 0.1366 0.1173 0.5959 0.1345 0.14+0.30i 0.7304

50 0.1195 0.1192 0.0218 0.1191 0.4445 0.0291 0.1185 0.53+0.45i 0.0730

100 0.1174 0.1172 0.0148 0.1175 0.3230 -0.0074 0.1145 0.56+0.59i 0.2173

200 0.1100 0.1098 0.0158 0.1100 0.3137 0.0000 0.1063 0.44+0.64i 0.2972

300 0.1049 0.1042 0.0582 0.1027 0.1489 0.1841 0.0994 0.41+0.50i 0.4678

400 0.0991 0.0985 0.0527 0.0968 0.3236 0.2040 0.0931 0.35+0.39i 0.5425

500 0.0928 0.0925 0.0281 0.0901 0.2998 0.2565 0.0882 0.35+0.31i 0.4416

B2:  Fits of error for two different segmented data using the same dominating pole as given in table B1,
when ZE≠ZV and the data length of 8000 samples.  (Fig.9.4)
Model [8000]  ze=(1:8000) & zv=(30000:37999) [8000]  ze=(30000:37999) & zv=(10000:17999)

order FIR M12 (0.0812) Laguerre Kautz FIR M12 (0.0812) Laguerre Kautz

Fit DB Fit DB Fit DB Fit DB Fit DB Fit DB

2 0.2125 0.2125 0.0000 0.2100 0.1028 0.1929 0.8405 0.2090 0.2090 0.0000 0.2075 0.0626 0.1905 0.8050

10 0.1469 0.1375 0.5744 0.1370 0.6060 0.1346 0.7595 0.1457 0.1359 0.6048 0.1354 0.6368 0.1327 0.8118

50 0.1194 0.1191 0.0219 0.1188 0.0438 0.1182 0.0877 0.1181 0.1178 0.0221 0.1172 0.0664 0.1168 0.0961

100 0.1171 0.1171 0.0000 0.1171 0.0000 0.1138 0.2483 0.1163 0.1163 0.0000 0.1158 0.0374 0.1122 0.3117

200 0.1094 0.1090 0.0318 0.1090 0.0318 0.1057 0.2988 0.1093 0.1092 0.0080 0.1089 0.0318 0.1061 0.2581

300 0.1049 0.1044 0.0415 0.1033 0.1335 0.0991 0.4940 0.1041 0.1037 0.0334 0.1027 0.1176 0.0998 0.3664

400 0.0999 0.0991 0.0698 0.0976 0.2023 0.0936 0.5658 0.1002 0.0994 0.0696 0.0973 0.2551 0.0946 0.4995

500 0.0940 0.0929 0.1022 0.0901 0.3681 0.0881 0.5630 0.0946 0.0944 0.0184 0.0905 0.3849 0.0891 0.5203

B3:  The new dominating pole and the fits of error for the same segmented data used in table B2, when
ZE≠ZV and the data length of 8000 samples.  (Fig.9.5)

Model [8000]  ze=(1:8000) & zv=(30000:37999) [8000]  ze=(30000:37999) & zv=(10000:17999)

order Laguerre Kautz Laguerre Kautz

Fit Pole DB Fit Pole DB Fit Pole DB Fit Pole DB

2 0.2100 -0.7095 -0.0249 0.1928 0.80+0.51i 0.7174 0.2075 -0.6982 0.0792 0.1906 0.80+0.51i 0.8171

10 0.1370 0.1193 0.5705 0.1347 0.14+0.29i 0.7175 0.1354 0.1167 0.6725 0.1327 0.14+0.30i 0.8475

50 0.1188 0.4777 0.0510 0.1182 0.47+0.53i 0.0950 0.1173 0.5750 0.1614 0.1169 0.48+0.53i 0.1911

100 0.1171 0.3357 0.0222 0.1141 0.55+0.61i 0.2476 0.1158 0.3360 0.1192 0.1131 0.28+0.57i 0.3241

200 0.1091 0.3090 0.0714 0.1056 0.47+0.63i 0.3546 0.1091 0.0770 0.0714 0.1066 0.51+0.54i 0.2727

300 0.1033 0.1493 0.1335 0.0996 0.35+0.54i 0.4503 0.1027 0.1496 0.1841 0.1022 0.40+0.50i 0.2265

400 0.0974 0.2482 0.1503 0.0934 0.33+0.60i 0.5145 0.0977 0.2489 0.1236 0.0946 0.35+0.39i 0.4037

500 0.0902 0.3010 0.2468 0.0885 0.24+0.55i 0.4121 0.0906 0.2893 0.2084 0.0891 0.35+0.31i 0.3534
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B4:  Fits of error of the two different sizes of data, 4000 and 12000 samples, using the same dominating pole
as given in table B1, when ZE≠ZV.  (Fig.9.6)
Model [4000]  ze=(10000:13999) and zv=(20000:23999) [12000]  ze=(10000:21999) and zv=(20000:31999)

order FIR M12 (0.0812) Laguerre Kautz FIR M12 (0.0812) Laguerre Kautz

Fit DB Fit DB Fit DB Fit DB Fit DB Fit DB

2 0.2090 0.2090 0.0000 0.2076 0.0584 0.1904 0.8096 0.2110 0.2110 0.0000 0.2089 0.0869 0.1911 0.8604

10 0.1443 0.1361 0.5082 0.1357 0.5337 0.1339 0.6497 0.1471 0.1376 0.5799 0.1371 0.6115 0.1349 0.7520

50 0.1180 0.1177 0.0221 0.1172 0.0591 0.1170 0.0739 0.1195 0.1193 0.0145 0.1190 0.0364 0.1186 0.0657

100 0.1159 0.1160 -0.0075 0.1169 -0.0746 0.1138 0.1588 0.1174 0.1172 0.0148 0.1171 0.0222 0.1143 0.2324

200 0.1099 0.1102 -0.0237 0.1100 -0.0079 0.1069 0.2404 0.1094 0.1093 0.0079 0.1093 0.0079 0.1058 0.2906

300 0.1063 0.1049 0.1152 0.1036 0.2235 0.1011 0.4356 0.1044 0.1038 0.0501 0.1024 0.1680 0.0985 0.5053

400 0.1008 0.1006 0.0173 0.0994 0.1215 0.0961 0.4147 0.0990 0.0982 0.0705 0.0959 0.2763 0.0921 0.6275

500 0.0952 0.0956 -0.0364 0.0929 0.2124 0.0916 0.3348 0.0924 0.0916 0.0755 0.0889 0.3354 0.0870 0.5231

B5:  The new dominating pole and the fits of error for the same set of data size used in table B4, when
ZE≠ZV.  (Fig.9.7)
Model [4000]  ze=(10000:13999) and zv=(20000:23999) [12000]  ze=(10000:21999) and zv=(20000:31999)

order Laguerre Kautz Laguerre Kautz

Fit Pole DB Fit Pole DB Fit Pole DB Fit Pole DB

2 0.2076 -0.7015 0.0584 0.1904 0.80+0.50i 0.8096 0.2089 -0.7029 0.0869 0.1911 0.80+0.50i 0.8604

10 0.1357 0.1186 0.5337 0.1339 0.14+0.30i 0.6497 0.1371 0.1180 0.6115 0.1349 0.14+0.30i 0.7520

50 0.1179 0.6111 0.0074 0.1174 0.50-0.51i 0.0443 0.1190 0.4447 0.0364 0.1184 0.45+0.52i 0.0803

100 0.1170 0.4486 -0.0820 0.1142 0.55-0.60i 0.1283 0.1171 0.3250 0.0222 0.1140 0.57+0.60i 0.2553

200 0.1100 0.3141 -0.0079 0.1074 0.50-0.57i 0.1999 0.1092 0.3052 0.0159 0.1054 0.50+0.62i 0.3235

300 0.1036 0.1481 0.2235 0.1014 0.50-0.40i 0.4099 0.1024 0.1493 0.1680 0.0987 0.40+0.50i 0.4877

400 0.0995 0.2490 0.1127 0.0961 0.35-0.39i 0.4147 0.0960 0.2495 0.2673 0.0923 0.32+0.53i 0.6087

500 0.0929 0.3096 0.2124 0.0916 0.35-0.31i 0.3348 0.0890 0.2987 0.3256 0.0865 0.23+0.42i 0.5731
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B5:  Fits of error of FIR, M12, Laguerre and Kautz models for the real acoustic echo data, when ZE≠ZV and
the data length of 8000 samples.  (Fig.9.8)

Model FIR M12 (0.0812) Laguerre Kautz

order Fit Fit DB Fit Pole DB Fit Pole DB

2 0.2094 0.2094 0.0000 0.2073 -0.7033 0.0875 0.1895 0.80+0.50i 0.8673

4 0.2094 0.2094 0.0000 0.2016 0.5960 0.3297 0.1786 0.52+0.56i 1.3819

6 0.2089 0.2037 0.2189 0.1762 0.5898 1.4787 0.1605 0.45+0.36i 2.2893

8 0.1768 0.1521 1.3071 0.1368 0.1429 2.2279 0.1368 0.14+0.02i 2.2279

10 0.1463 0.1371 0.5641 0.1366 0.1173 0.5959 0.1345 0.14+0.30i 0.7304

20 0.1225 0.1223 0.0142 0.1218 0.2761 0.0498 0.1217 0.28 0.0569

30 0.1218 0.1212 0.0429 0.1204 0.3036 0.1004 0.1199 0.42+0.27i 0.1366

40 0.1208 0.1200 0.0577 0.1194 0.4701 0.1013 0.1193 0.54+0.23i 0.1085

50 0.1195 0.1192 0.0218 0.1191 0.4445 0.0291 0.1185 0.53+0.45i 0.0730

60 0.1193 0.1191 0.0146 0.1189 0.6072 0.0292 0.1176 0.45+0.58i 0.1247

70 0.1191 0.1189 0.0146 0.1187 0.5692 0.0292 0.1168 0.53+0.53i 0.1694

80 0.1188 0.1188 0.0000 0.1184 0.3565 0.0293 0.1154 0.49+0.63i 0.2522

90 0.1186 0.1182 0.0293 0.1177 0.5086 0.0662 0.1149 0.50+0.63i 0.2753

100 0.1174 0.1172 0.0148 0.1175 0.3230 -0.0074 0.1145 0.56+0.59i 0.2173

200 0.1100 0.1098 0.0158 0.1100 0.3137 0.0000 0.1063 0.44+0.64i 0.2972

300 0.1049 0.1042 0.0582 0.1027 0.1489 0.1841 0.0994 0.41+0.50i 0.4678

400 0.0991 0.0985 0.0527 0.0968 0.3236 0.2040 0.0931 0.35+0.39i 0.5425

500 0.0928 0.0925 0.0281 0.0901 0.2998 0.2565 0.0882 0.35+0.31i 0.4416

600 0.0874 0.0852 0.2214 0.0838 0.1800 0.3653 0.0828 0.21+0.40i 0.4696

700 0.0811 0.0800 0.1186 0.0790 0.1600 0.2279 0.0778 0.16+0.28i 0.3608

800 0.0759 0.0758 0.0115 0.0755 0.1000 0.0459 0.0735 0.17+0.32i 0.2791

900 0.0706 0.0711 -0.0613 0.0705 0.0400 0.0123 0.0697 0.05+0.25i 0.1114

1000 0.0668 0.0666 0.0260 0.0666 0.0743 0.0260 0.0649 0.05+0.34i 0.2506

1100 0.0631 0.0636 -0.0686 0.0631 0.0600 0.0000 0.0620 0.31i 0.1528

1200 0.0601 0.0598 0.0435 0.0598 0.1184 0.0435 0.0598 0.10+0.30i 0.0467

1300 0.0575 0.0571 0.0606 0.0571 0.0911 0.0606 0.0563 0.10+0.18i 0.1832

1400 0.0559 0.0529 0.4791 0.0537 0.1000 0.3488 0.0528 0.15+0.23i 0.4956

1500 0.0526 0.0512 0.2343 0.0507 0.1200 0.3196 0.0504 0.15+0.13i 0.3711

1600 0.0507 0.0490 0.2962 0.0485 0.1000 0.3853 0.0477 0.12+0.25i 0.5298

1700 0.0472 0.0468 0.0739 0.0464 0.1000 0.1485 0.0450 0.08+0.28i 0.4146

1800 0.0452 0.0450 0.0385 0.0450 0.0400 0.0385 0.0432 0.12+0.33i 0.3931

1900 0.0432 0.0431 0.0201 0.0426 0.0403 0.1215 0.0411 0.10+0.38i 0.4328

2000 0.0411 0.0410 0.0212 0.0409 0.0650 0.0424 0.0394 0.05+0.33i 0.3669

B5(Continue):  Fits of error of a two-stage echo canceller models for the real acoustic echo data, when ZE≠ZV
and the data length of 8000 samples.  (Fig.9.9)
Model Two-Stage Echo Canceller by Laguerre model Two-Stage Echo Canceller by Kautz model

NB=500 NB=1000 NB=500 NB=1000

Fit Pole DB Fit Pole DB Fit Pole DB Fit Pole DB

1-500

600 0.0857 0.46 0.1706 0.0838 0.38-0.45i 0.3653

700 0.0802 0.24 0.0969 0.0792 0.32-0.50i 0.2059

800 0.0756 0.12 0.0344 0.0747 0.30-0.35i 0.1384

900 0.0705 0.10 0.0123 0.0696 0.15+0.36i 0.1239

1000 0.0665 0.10 0.0391 0.0654 0.12+0.47i 0.1840

1100 0.0633 0.05 -0.0275 0.0634 0.18 -0.0412 0.0622 0.20+0.45i 0.1248 0.0621 0.20+0.54i 0.1388

1200 0.0596 0.13 0.0726 0.0595 0.28 0.0872 0.0596 0.17+0.35i 0.0726 0.0592 0.32+0.60i 0.1311

1300 0.0571 0.10 0.0606 0.0570 0.26 0.0759 0.0560 0.15+0.20i 0.2296 0.0565 0.30+.048i 0.1524

1400 0.0537 0.16 0.3488 0.0536 0.28 0.3649 0.0530 0.20+0.32i 0.4674 0.0529 0.24+0.50i 0.4791

1500 0.0507 0.20 0.3196 0.0516 0.22 0.1667 0.0499 0.20+0.30i 0.4577 0.0500 0.32+0.37i 0.4403

1600 0.0486 0.14 0.3674 0.0490 0.26 0.2962 0.0474 0.15+0.33i 0.5846 0.0479 0.23+0.36i 0.4934

1700 0.0466 0.07 0.1071 0.0468 0.10 0.0739 0.0455 0.10+0.30i 0.3164 0.0455 0.18+0.43i 0.3186

1800 0.0450 0.07 0.0480 0.0449 0.10 0.0652 0.0431 0.15+0.40i 0.4113 0.0433 0.20+0.45i 0.3812

1900 0.0426 0.05 0.1116 0.0426 0.08 0.1168 0.0415 0.15+0.38i 0.3535 0.0415 0.20+0.47i 0.3487

2000 0.0409 0.10 0.0490 0.0409 0.16 0.0439 0.0397 0.08+0.33i 0.3092 0.0397 0.10+0.38i 0.3010
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   Appendix C

Matlab  script files for “Modeling the Impulse Response of an office room”.

function fit = fit_arx(ze,zv,NN)

%FIT_ARX  computes the fit of error of LS-estimates of ARX or FIR model
%
%   FIT = FIT_ARX(ze,zv,NN)
%
%   FIT: returned as the fit of error calculated from ARX model  A(q) y(t) = B(q) u(t-nk) + e(t) 
% by using cross validation approach.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   NN: NN = [na nb nk], the orders and the true delay of the model. If na=0, the model will correspond to FIR model.

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

vz=1;  if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0;  end;   end;
maxlength = length(ze(:,1));
NA=NN(1);  NB=NN(2);  NK=NN(3);

PHI=[ ];  PHIV=[ ];  TH=[ ];
[TH,PHI,PHIV]= mo_arxstruc(ze,zv,[NA NB NK]);
nmax = max([NA+1, NB+NK]);
jj=nmax:maxlength;
if vz==0, ysim=PHI*TH; else, ysim=PHIV*TH; end
fit  = norm(ysim-zv(jj,1))/sqrt(length(jj));

function [TH,PHI,PHIV] = mo_arxstruc(ze,zv,NN);

%MO_ARXSTRUC computes the regression matrix and the estimated parameters of ARX-model.
%
%   [TH,PHI,PHIV] = MO_ARXSTRUC(ze,zv,NN)
%
%   This function was modified from a traditional "ARXSTRUC.M" in order to extract the  regression matrices
%        (PHI and PHIV) and the estimated parameter vector(TH).
%
%   TH: returned as the estimated parameters of the ARX model  A(q) y(t) = B(q) u(t-nk) + e(t) .
%
%   PHI: returned as a regression matrix which is generated by a set of estimation data (ze).
%
%   PHIV: returned as a regression matrix which is generated by a set of validation data (zv).
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   NN: NN = [na nb nk], the orders and the true delay of the model. If na=0, the model will correspond to FIR model.

%   Modified from arxstruc.m which was written by L. Ljung in Matlab “System Identification Toolbox”
%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15
z = ze;                          nn = NN;
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[Ncap,nz] = size(z);    nu = nz-1;
[nm,nl]   = size(nn);   [Ncapv,nzv] = size(zv);

if nz>1, na=nn(:,1);nb=nn(:,2:1+nu);nk=nn(:,2+nu:1+2*nu);
else na=nn(:,1); nb=zeros(nm,1);nk=zeros(nm,1);  end;

nma=max(na);     nbkm=max(nb+nk)-ones(1,nu);
nkm=min(nk);     n=nma+sum((nbkm-nkm))+nu;
vz=1;  if size(z)==size(zv),  if norm(z-zv)<eps, vz=0;  end;   end;

% ---Set up default values
maxsdef=idmsize(Ncap,n);       maxsize=maxsdef;

% ---Construct regression matrix
nmax=max(max([na+ones(nm,1) nb+nk]'))-1;
M=10000;  (To avoid “out of memory”)
R=zeros(n);            F=zeros(n,1);
if vz,Rv=zeros(n);  Fv=zeros(n,1);  end;

for k=nmax:M:max(Ncap,Ncapv)  %k=1:25000:4 yields 1
   if min(Ncap,k+M)<k+1, ntz=0; else ntz=1; end
   if min(Ncapv,k+M)<k+1, ntzv=0; else ntzv=1; end
   if ntz,jj=(k+1:min(Ncap,k+M));phi=zeros(length(jj),n);end
      if vz & ntzv,jjv=(k+1:min(Ncapv,k+M));phiv=zeros(length(jjv),n);end
      for kl=1:nma,
         if ntz,phi(:,kl)=-z(jj-kl,1);end
         if vz & ntzv ,phiv(:,kl)=-zv(jjv-kl,1);end
      end
      ss=nma;

      for ku=1:nu
         for kl=nkm(ku):nbkm(ku),
             if ntz,phi(:,ss+kl+1-nkm(ku))=z(jj-kl,ku+1);end
             if vz & ntzv,phiv(:,ss+kl+1-nkm(ku))=zv(jjv-kl,ku+1);end
         end
         ss=ss+nbkm(ku)-nkm(ku)+1;
      end
      if ntz,R=R+phi'*phi; F=F+phi'*z(jj,1);end
      if vz & ntzv,Rv=Rv+phiv'*phiv; Fv=Fv+phiv'*zv(jjv,1);end
end

jj=0;
for j=1:nm
   estparno=na(j)+sum(nb(j,:));
   if estparno>0
     jj=jj+1;
     s=[1:na(j)];
     rs=nma;
     for ku=1:nu
         s=[s,rs+nk(j,ku)-nkm(ku)+1:rs+nb(j,ku)+nk(j,ku)-nkm(ku)];
         rs=rs+nbkm(ku)-nkm(ku)+1;
     end
     RR=R(s,s);  %RR=X'*X
     FF=F(s);    %FF=X'*D
     if vz,RRv=Rv(s,s);FFv=Fv(s);end
     TH=(RR\FF);
   end % if estparno>0
end;
PHI=phi;   PHIV=[ ];  if vz==1, PHIV=phiv;  end;

function optimal_pole = M12_pole(impulse_response,delay)

%M12_POLE computes the optimal Laguerre pole by minimizing the performance index J as given in section 7.1.
% It requires a given set of the impulse response of the true system.
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%
%   OPTIMAL_POLE = M12_POLE(impulse_response, delay)
%
%   OPTIMAL POLE: returned as the optimal Laguerre pole which is derived by minimizing the performance index J.
%
%   IMPULSE_RESPONSE: The impulse response of the true system.
%
%   DELAY: The true delay of the system.

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

ir_length = length(impulse_response);
h = impulse_response(:);
square_h = h'*h;

%-----------------------M1 calculation
m1_temp=0;
for i=0:ir_length-1
    m1_temp = m1_temp + i*(h(i+1)^2);
end
M1= m1_temp/square_h;

%-----------------------M2 calculation
h(ir_length+1)=0;   h(ir_length+2)=0;
m2_temp=0;
for i=0:ir_length-1
    m2_temp = m2_temp + ( (h(i+2)-h(i+1)) * ( i*( h(i+2)-h(i+1) ) ) );
end
M2= m2_temp/square_h;

%-----------------------Optimum pole calculation
if delay > 1
   ii = 1:ir_length;
   D3 = (h(ii)'*h(ii+1))/square_h;
   M1 = M1+delay-1;
   M2 = M2+(2*(delay-1)*(1-D3));
end
optimal_pole = (2*M1-1-M2) / ( 2*M1 - 1 + sqrt( 4*M1*M2 - M2^2 - 2*M2 ) );

function fit = fit_orthonormal(ze,zv,NN,pole)

%FIT_ORTHONORMAL computes the fit of error of LS-estimates of Laguerre or Kautz model.
%
%   FIT = FIT_ORTHONORMAL(ze,zv,NN,pole)
%
%   FIT: returned as the fit of error which is calculated from the Laguerre or Kautz model with FIR or ARX structure
 %  A(q) y(t) = B(q) u(t-nk) + e(t)  by using cross validation approach.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   NN: NN = [na nb nk], the orders and the true delay of the model. If na=0, the model will correspond to FIR structure.
%
%   POLE: The dominating pole employed in the orthonormal model, where a real-valued pole corresponds to Laguerre
%    model and a complex-valued pole corresponds to Kautz model.
% We use the same pole for every model order specified by [na nb] to calculate the fit of error.

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

NA = NN(1);   NB=NN(2);   NK = NN(3)-1;   if NK<0, NK=0; end;
vz = 1; if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0;  end;   end;
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maxlength = length(ze(:,1));
nmax  = max([NA+1, NB+NK+1]);   ii=nmax:maxlength;

if abs(imag(pole)) > 0   %---Kautz model
   aPHI =[ ];  aPHIV=[ ];  bPHI=[ ];  bPHIV=[ ];  PHI=[ ];  PHIV=[ ];
   poles=[ ];   poles(1:NB/2)=pole;
   [bPHI,bPHIV] = phi_gobfilt_arx(ze,zv,poles,0);
   if NA~=0   %---ARX structure
      poles=[ ];      poles(1:NA/2)=pole;
      [aPHI,aPHIV] = phi_gobfilt_arx(ze,zv,poles,1);
      PHI = [aPHI(ii,:), bPHI(ii-NK,:)];
      if vz==1, PHIV=[aPHIV(ii,:),bPHIV(ii-NK,:)]; end;
   else       %---FIR structure
      PHI = bPHI(ii-NK,:);
      if vz==1, PHIV=bPHIV(ii-NK,:); end;
   end;
else  %---Laguerre model
   aPHI =[ ];  aPHIV=[ ];  bPHI=[ ];  bPHIV=[ ];  PHI=[ ];  PHIV=[ ];
   poles=[ ];      poles(1:NB)=pole;
   [bPHI,bPHIV] = phi_gobfilt_arx(ze,zv,poles,0);
   if NA~=0   %---ARX structure
      poles=[ ];      poles(1:NA)=pole;
      [aPHI,aPHIV] = phi_gobfilt_arx(ze,zv,poles,1);
      PHI = [aPHI(ii,:), bPHI(ii-NK,:)];
      if vz==1, PHIV=[aPHIV(ii,:),bPHIV(ii-NK,:)]; end;
   else       %---FIR structure
      PHI = bPHI(ii-NK,:);
      if vz==1, PHIV=bPHIV(ii-NK,:); end;
   end;
end
THETA = PHI\ze(ii,1);
if vz==0, ysim=PHI*THETA; else, ysim=PHIV*THETA; end;
fit = norm(ysim-zv(ii,1))/sqrt(length(ysim));

function  [mPHI,mPHIV] = phi_gobfilt_arx(ze,zv,poles,NAflag)

%PHI_GOBFILT_ARX computes the regression matrices used in estimation/validation process for orthonormal model.
%
%   [mPHI,mPHIV] = phi_gobfilt_arx(ze,zv,poles,NAflag)
%
%   mPHI:  returned as the regression matrix used for estimation process.
%
%   mPHIV: returned as the regression matrix used for validation process.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   POLES: is a matrix containing the set of chosen poles in a row.
%
%   NAflag: The index used for indicating the type of model structures, i.e. NAflag=1 corresponds to ARX structure, while
%  NAflag=0 corresponds to FIR structure.

%   Modified from gobfilt.m which was written by Brett Ninness (First written 9/8/94)
%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

if nargin<4, NAflag=0; end;
vz = 1; if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0; end; end;
ue_ap = ze(:,2);    ye_ap = ze(:,1);
uv_ap = zv(:,2);   yv_ap = zv(:,1);
mPHI = [ ];          mPHIV = [ ];

%---- uap = u filtered through the all pass filter up to pole k-1
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for k = 1:length(poles)
    if ( abs( imag( poles(k) ) ) > 0 )
       denk = [1,-poles(k)];
       %---If the pole is complex we have to include its conjugate automatically
       denk = real(conv(denk,[1,-poles(k)']));
       alpha = 2*real(poles(k))/(1+abs(poles(k))^2);
       %---Kautz Numerator
       numk1 = sqrt((1-alpha^2)*(1+abs(poles(k))^2)*(1-abs(poles(k))^2))*[0 0 1];
       numk2 = sqrt((1+abs(poles(k))^2)*(1-abs(poles(k))^2))*[0 1 -alpha];
       if NAflag==0   %---FIR structure
          phi1  = filter(numk1,denk,ue_ap);      phi2  = filter(numk2,denk,ue_ap);
          mPHI  = [mPHI,phi1(:),phi2(:)];        ue_ap = filter([denk(3:-1:1)'],denk,ue_ap);
          if vz
             phiv1 = filter(numk1,denk,uv_ap);   phiv2 =  filter(numk2,denk,uv_ap);
             mPHIV = [mPHIV,phiv1(:),phiv2(:)];  uv_ap =  filter([denk(3:-1:1)'],denk,uv_ap);
          end;
       else           %---ARX structure
          phi1  = filter(numk1,denk,-ye_ap);     phi2  = filter(numk2,denk,-ye_ap);
          mPHI  = [mPHI,phi1(:),phi2(:)];        ye_ap = filter([denk(3:-1:1)'],denk,ye_ap);
          if vz
             phiv1 = filter(numk1,denk,-yv_ap);  phiv2 =  filter(numk2,denk,-yv_ap);
             mPHIV = [mPHIV,phiv1(:),phiv2(:)];  yv_ap =  filter([denk(3:-1:1)'],denk,yv_ap);
          end;
       end;
    else
       numk = [0 sqrt(1-abs(poles(k))^2)];
       denk = [1,-poles(k)];
       if NAflag==0   %---FIR structure
          phi  = filter(numk,denk,ue_ap);
          mPHI = [mPHI,phi(:)];                  ue_ap=filter([denk(2:-1:1)'],denk,ue_ap);
          if vz
             phiv  = filter(numk,denk,uv_ap);
             mPHIV = [mPHIV,phiv(:)];            uv_ap=filter([denk(2:-1:1)'],denk,uv_ap);
          end;
       else           %---ARX structure
          phi  = filter(numk,denk,-ye_ap);
          mPHI = [mPHI,phi(:)];                  ye_ap=filter([denk(2:-1:1)'],denk,ye_ap);
          if vz
             phiv  = filter(numk,denk,-yv_ap);
             mPHIV = [mPHIV,phiv(:)];            yv_ap=filter([denk(2:-1:1)'],denk,yv_ap);
          end;
       end;
   end;
end;

function optimal_pole = arg_max(ze,NN,real_part,imaginary_part)

%ARG_MAX computes the optimal dominating pole by minimizing the squared error as given in section 7.2.
%
%   OPTIMAL_POLE = ARG_MAX(ze,NN,real_part,imaginary_part)
%
%   OPTIMAL POLE: returned the optimal pole based on the ARX model  A(q) y(t) = B(q) u(t-nk) + e(t) 
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used  for estimating the model parameters.
%
%   NN: NN = [na nb nk], the orders and the true delay of the model. If na=0, the model will correspond to FIR model.
%
%   REAL_PART: real_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.
%
%   IMAGINARY_PART: imaginary_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15
if nargin<4, imaginary_part=0; end;
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NA = NN(1);    NB=NN(2);
NK = NN(3)-1;    if NK<0, NK=0; end;
maxlength =length(ze(:,1));
if length(real_part)>1, step_size_r=real_part(2)-real_part(1); else, step_size_r=0; end;
if length(imaginary_part)>1, step_size_c=imaginary_part(2)-imaginary_part(1); else, step_size_c=0; end;
nmax  = max([NA+1, NB+NK+1]);   ii=nmax:maxlength;   N=length(ii);

a_max = [ ];
for i=1:length(real_part)
   for j=1:length(imaginary_part)
        poles = [ ];     pole = real_part(i)+imaginary_part(j);
        if abs(pole) < 0.99
           aPHI=[ ];  aPHIV=[ ];  bPHI=[ ];  bPHIV=[ ];  PHI=[ ];  PHIV=[ ];
           if abs(imag(pole))>0   %---KAUTZ model
              poles=[ ];      poles(1:NB/2)=pole;
              [bPHI,bPHIV] = phi_gobfilt_arx(ze,ze,poles,0);
              if NA~=0   %---ARX structure
                 poles=[ ];      poles(1:NA/2)=pole;
                 [aPHI,aPHIV] = phi_gobfilt_arx(ze,ze,poles,1);
                 PHI = [aPHI(ii,:),bPHI(ii-NK,:)];
              else       %---FIR structure
                 PHI = bPHI(ii-NK,:);
              end;
           else   %---LAGUERRE model
              poles=[ ];      poles(1:NB)=pole;
              [bPHI,bPHIV] = phi_gobfilt_arx(ze,ze,poles,0);
              if NA~=0   %---ARX structure
                 poles=[ ];      poles(1:NA)=pole;
                 [aPHI,aPHIV] = phi_gobfilt_arx(ze,ze,poles,1);
                 PHI = [aPHI(ii,:),bPHI(ii-NK,:)];
              else       %---FIR structure
                 PHI = bPHI(ii-NK,:);
              end;
           end;
           Town  = (PHI'*PHI)/N;
           gamma = (ze(ii,1)'*PHI)/N;
           a_max(i,j) = gamma*inv(Town)*gamma';
        else
           a_max(i,j) = 0;
        end;
    end;
end
[yimax,irow] = max(a_max);
[yjmax,jcol] = max(max(a_max));
optimal_pole = (real_part(1)+(irow(jcol)-1)*step_size_r) + (imaginary_part(1)+(jcol-1)*step_size_c);

function fit = fit_2stages(ze,zv,NN,pole,firPHI,firPHIV)

%FIT_2STAGES computes the fit of error of the two-stage echo canceller
%
%   FIT = FIT_2STAGES(ze,zv,NN,pole)
%
%   FIT: returned as the fit of error which is calculated from the two-stage echo canceller as given in section 6.4, where the
% first stage is a FIR model of NB parameters and the second stage is an orthonormal model of NA parameters.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   NN: NN = [na nb nk], the orders of each stage(na, nb) and the true delay(nk) of the model.
%
%   POLE: The optimal pole used in an orthonormal model, where real-valued pole corresponds to Laguerre model and
% complex-valued pole corresponds to Kautz model. We use the same pole for every model order specified by NA.
%   [  firPHI, firPHIV ]:  The regression matrices corresponding to FIR model which is computed by the first stage NB
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% parameters from [firPHI, firPHIV] = phi_gobfilt_arx(ze,zv,poles,0), where poles = zeros(1:NB).

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

NA = NN(1);  NB = NN(2);  NK = NN(3)-1; if NK<0, NK=0; end;
vz=1; if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0; end;  end;
maxlength = length(ze(:,1));   nmax  = max([1, NA+NB+NK+1]);
ii = nmax:maxlength;             N = length(ii);

poles = [ ];  if abs(imag(pole))>0, poles = ones(1,NA/2)*pole; else, poles = ones(1,NA)*pole; end;
bPHI = [ ];  bPHIV = [ ];  [bPHI,bPHIV] = phi_gobfilt_arx(ze,zv,poles,0);
PHI   = [ ];  PHI = [firPHI(ii-NK,:),  bPHI(ii-NK-NB,:)];
if vz==1, PHIV = [ ];  PHIV = [firPHIV(ii-NK,:), bPHIV(ii-NK-NB,:)];
THETA = PHI\ze(ii,1);
if vz==0,  ysim=PHI*THETA; else, ysim=PHIV*THETA; end;
fit = norm(ysim-zv(ii,1))/sqrt(length(ysim));

function optimal_pole = arg_max_2stages(ze,NN,real_part,imaginary_part,firPHI,firPHIV)

%ARG_MAX_2STAGES computes the optimal pole for using in an orthonormal model of the two-stage echo canceller,
% where the first stage is a FIR model of NB parameters and the second stage is an orthonormal model with FIR
% structure of NA parameters. The optimal pole is calculated by minimizing the squared error given in section 7.2.
%
%   OPTIMAL_POLE = ARG_MAX_2STAGES(ze,NN,real_part,imaginary_part,firPHI,firPHIV)
%
%   OPTIMAL POLE: returned the optimal pole of the two-stage echo canceller.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   NN: NN = [na nb nk], the orders of each stages(na,nb) and the true delay(nk) of the model.
%
%   REAL_PART: real_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.
%
%   IMAGINARY_PART: imaginary_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.
%
%   [ firPHI, firPHIV]:  The regression matrices of FIR model which is computed by the first stage NB parameters from
% [firPHI, firPHIV] = phi_gobfilt_arx(ze,zv,poles,0), where poles = zeros(1:NB).
%
%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/15

NA = NN(1);   NB = NN(2);   NK = NN(3)-1; if NK<0, NK=0; end;
maxlength = length(ze(:,1));
if length(real_part)>1, step_size_r = real_part(2)-real_part(1); else, step_size_r = 0; end;
if length(imaginary_part)>1, step_size_c = imaginary_part(2)-imaginary_part(1); else, step_size_c = 0; end;

nmax  = max([1, NA+NB+NK+1]);  ii=nmax:maxlength;  N=length(ii);
a_max = [ ];
for i=1:length(real_part)
    for j=1:length(imaginary_part)
        poles = [ ];      pole = real_part(i)+imaginary_part(j);
        if abs(pole) < 1
           if abs(imag(pole))>0
              poles = ones(1,NA/2)*pole;
           else
              poles = ones(1,NA)*pole;
           end;
           bPHI = [ ];  bPHIV = [ ];  [bPHI,bPHIV] = phi_gobfilt_arx(ze,ze,poles,0);
           PHI   = [ ];  PHI = [firPHI(ii-NK,:), bPHI(ii-NK-NB,:)];
           Town  = (PHI'*PHI)/N;
           gamma = (ze(ii,1)'*PHI)/N;
           a_max(i,j) = gamma*inv(Town)*gamma';
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        else
           a_max(i,j) = 0;
        end;
    end;
end;
[yimax,irow] = max(a_max);
[yjmax,jcol] = max(max(a_max));
optimal_pole = (real_part(1)+(irow(jcol)-1)*step_size_r)+(imaginary_part(1)+(jcol-1)*step_size_c)

function [order, fit, selected_poles, Energy]
                = model_reduction(ze,zv,true_delay,real_part,imaginary_part,no_iteration)

%MODEL_REDUCTION searches the ordering of the optimal dominating poles based on the criteria of the system energy
% in the sense that the first sections contribute most to the overall impulse response of the original system in a
% quadratic sense as discussed in section 7.4.2.
%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   TRUE_DELAY: the true delays of the system
%
%   REAL_PART: real_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.
%
%   IMAGINARY_PART: imaginary_part = [started_point:step_size:ended_point] (equally spaced) within unit circle.
%
%   NO_ITERATION: The maximum number of iteration used in this function in order to stop the process.(Default=50)
%
%   ORDER: The minimum model order obtained from this function, based on the system energy criterion.
%
%   FIT: The corresponding fit of error at obtained order and selected poles
%
%   SELECTED_POLES: The ordering of the chosen poles in the order of importance..
%
%   ENERGY: The accumulated energy at each order calculated from the squared absolute value of coefficient weights.

%   Piya Kovintavewat
%   Revision:1       Date: 1998/10/22

if nargin<6,  no_iteration = 50;  end;
if nargin<5,  imaginary_part = 0; end;
NK = true_delay-1; if NK<0, NK=0; end;
vz=1; if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0; end;  end
maxlength = length(ze(:,1));
if length(real_part)>1, step_size_r=real_part(2)-real_part(1); else, step_size_r=0; end;
if length(imaginary_part)>1, step_size_c=imaginary_part(2)-imaginary_part(1); else, step_size_c=0; end;
selected_poles = [ ];  Energy = [ ];  sel_NB=0;

for number_loop=1:no_iteration
    nmax = max([1, sel_NB+1+NK+1]);  ii = nmax:maxlength;

    %---Compute the energy of a first order section (only real poles)
    temp_Energy = [ ];  temp_total_energy = [ ];
    for j=1:length(real_part)
        choice_pole = real_part(j);
        poles = [ ];     poles=[selected_poles, choice_pole];
        bPHI = [ ];     bPHIV=[];  [bPHI,bPHIV] = phi_gobfilt_arx(ze,ze,poles,0);
        THETA = bPHI(ii-NK,:)\ze(ii,1);
        temp_Energy(j) = abs(THETA(sel_NB+1))^2;
        temp_total_energy(j) = sum(THETA.^2);
    end
    [Ymax,imax]  = max(temp_Energy);   Emax=Ymax;
    total_energy1 = temp_total_energy(imax);
    r_pole = real_part(imax);



Appendix C                                                                                                                                                           84

    %---Compute the energy of two additional first order sections for either complex-conjugated pole pair or
    %    2 identical real-valued poles.
    temp_Energy = [ ];   temp_total_energy = [ ];
    nmax = max([1, sel_NB+2+NK+1]);   ii = nmax:maxlength;
    for i=1:length(real_part)
        for j=1:length(imaginary_part)
            pole = real_part(i)+imaginary_part(j);
            if abs(pole) < 0.99
               if abs(imag(pole))==0, pole=ones(1,2)*pole; end;
               poles = [ ];  poles = [selected_poles, pole];
               bPHI = [ ];  bPHIV=[];  [bPHI,bPHIV] = phi_gobfilt_arx(ze,ze,poles,0);
               THETA = bPHI(ii-NK,:)\ze(ii,1);
               temp_Energy(i,j) = sum(abs(THETA(sel_NB+1:sel_NB+2)).^2);
               temp_total_energy(i,j) = sum(THETA.^2);
            else
               temp_Energy(i,j) = 0;  temp_total_energy(i,j) = 0;
            end;
        end;
    end;
    [yimax,irow]  = max(temp_Energy);
    [Ymax,imax]  = max(max(temp_Energy));
    total_energy2 = temp_total_energy(irow(imax),imax);
    c_pole = (real_part(1)+(irow(imax)-1)*step_size_r)+(imaginary_part(1)+(imax-1)*step_size_c);
    if abs(imag(c_pole))==0,  c_pole = ones(1,2)*c_pole;  end;

    %---Compare the increasing energy of real pole and that of complex pole
    if Ymax>Emax
       if isempty(Energy),  Energy = total_energy2;  else, Energy = [Energy,total_energy2]; end;
       selected_poles = [selected_poles, c_pole];      sel_NB = sel_NB+2;
    else
       if isempty(Energy),  Energy = total_energy1;  else, Energy = [Energy,total_energy1]; end;
       selected_poles = [selected_poles, r_pole];       sel_NB = sel_NB+1;
    end;

    %---Check an additional energy
    if length(Energy)>1,  Threshold = (Energy(length(Energy))-Energy(length(Energy)-1));  end;
    if (length(Energy)>1) & (Threshold < 0.001)  %---Less than 0.1% of the previous energy
       selected_poles = selected_poles(1:length(selected_poles)-1);
       Energy = Energy(1:length(Energy)-1);     break;
    end;
end;

%---Compute the order and the fit of error from the resulting optimal poles
real_p        =  selected_poles(find(abs(imag(selected_poles))==0));
complex_p =  selected_poles(find(abs(imag(selected_poles))>0));
order          =  length(real_p) + 2*length(complex_p);
poles          =  selected_poles;
nmax = max([1, order+NK+1]);  ii=nmax:maxlength;
bPHI = [ ];   bPHIV = [ ];           [bPHI,bPHIV] = phi_gobfilt_arx(ze,zv,poles,0);
THETA = bPHI(ii-NK,:)\ze(ii,1);
if vz==0,   ysim=bPHI(ii-NK,:)*THETA;  else,  ysim = bPHIV(ii-NK,:)*THETA;  end;
fit = norm(ysim-zv(ii,1))/sqrt(length(ysim));

function [mPHI, mPHIV, GAMMA] = orthobase(ze, zv, poles, NAflag, w, T, NK)

%ORTHOBASE computes the regression matrices used in estimation/validation process and the matrix used for calculating
% estimated model frequency response for orthonormal model.
%
%   [ mPHI, mPHIV, GAMMA ] = orthobase( ze, zv, poles, NAflag, w, T, NK)
%
%   mPHI:  returned as the regression matrix used for estimation process.
%
%   mPHIV: returned as the regression matrix used for validation process.
%   GAMMA:  Matrix such that the estimated model frequency response = GAMMA*THETA;
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%
%   ZE: the output-input data, ZE=[ye ue] with ye and ue as column vectors, used for estimation process.
%
%   ZV: the output-input data, ZV=[yv uv] having the same size as ZE, used for validation process.
%
%   POLES: is a matrix containing the set of chosen poles in a row.
%
%   NAflag: The index used for indicating the type of model structures, i.e. NAflag=1 corresponds to ARX structure, while
%  NAflag=0 corresponds to FIR structure.
%
%   W: Vector of frequencies to evaluate freq. response at NOT in normalized, but in real freq.
%
%   T: Normalized sampling time interval.
%
%   NK: The true delay of the system.

%   Modified from orthobase.m which was written by Brett Ninness (First written 9/8/94).
%   Piya Kovintavewat
%   Revision:1       Date: 1998/08/08

if nargin<7, NK = 0;    end;
if nargin<6, T    = 1;    end;
if nargin<5, w    = [ ];  end;
if nargin<4, Naflag=0; end;   Aflag = NAflag;
NK=NK-1; if NK<0, NK=0; end;
vz=1; if size(ze)==size(zv), if norm(ze-zv)<eps, vz=0; end; end

mPHI = [ ];    mPHIV = [ ];  GAMMA = [ ];
ww     = exp(j*w*T);
ww_NK=exp(-j*w*T*NK);

%-------------------------Initialize the construction
num  = sqrt(1-abs(poles(1))^2);
den   = [1,-poles(1)];

if abs(imag(poles(1))) > 0
   %------- If a pole is complex we have to include its conjugate
   den   = conv(den,[1,-poles(1)']);
   alpha = 2*real(poles(1))/(1+abs(poles(1))^2);

   if Aflag==0  %--FIR structure
      phi     = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(1))^2)), den, ze(:,2));           mPHI     = [mPHI, phi(:)];
      if vz,  phiv  = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(1))^2)), den, zv(:,2));  mPHIV  = [mPHIV, phiv(:)];   end;
   else  %--ARX structure
      phi     = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(1))^2)), den, -ze(:,1));           mPHI     = [mPHI, phi(:)];
      if vz,  phiv  = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(1))^2)), den, -zv(:,1));  mPHIV  = [mPHIV,phiv(:)];  end;
   end;
   gamma = polyval(num*sqrt((1-alpha^2)*(1+abs(poles(1))^2)), ww)./polyval(den,ww);  GAMMA = [GAMMA, gamma(:)];

   if Aflag==0  %--FIR structure
      phi     = dlsim(num*sqrt(1+abs(poles(1))^2)*[1,-alpha], den, ze(:,2));           mPHI    = [mPHI, phi(:)];
      if vz,  phiv  = dlsim(num*sqrt(1+abs(poles(1))^2)*[1,-alpha], den, zv(:,2));  mPHIV = [mPHIV,phiv(:)];    end;
   else   %--ARX structure
      phi     = dlsim(num*sqrt(1+abs(poles(1))^2)*[1,-alpha],den,-ze(:,1));             mPHI     = [mPHI, phi(:)];
      if vz,  phiv  = dlsim(num*sqrt(1+abs(poles(1))^2)*[1,-alpha],den,-zv(:,1));    mPHIV  = [mPHIV,phiv(:)];  end;
   end;
   gamma = polyval(num*sqrt(1+abs(poles(1))^2)*[1,-alpha], ww)./polyval(den, ww);   GAMMA = [GAMMA, gamma(:)];

   %-------  Now put complex-conjugated pole automatically for the next iteration.
   num = num*[-poles(1)',1];

else
   if Aflag==0  %--FIR structure
      phi  = dlsim(num, den, ze(:,2));             mPHI   = [mPHI, phi(:)];
      if vz, phiv = dlsim(num, den, zv(:,2));    mPHIV = [mPHIV, phiv(:)]; end;
   else  %--ARX structure
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      phi    = dlsim(num, den, -ze(:,1));           mPHI    = [mPHI, phi(:)];
      if vz, phiv = dlsim(num, den, -zv(:,1));   mPHIV = [mPHIV, phiv(:)];   end;
   end;
   gamma = (polyval(num, ww)./polyval(den, ww)).*ww_NK;   GAMMA = [GAMMA, gamma(:)];
end;

%------------------------- Now iterate through for as many poles as specified.
for k = 2:length(poles)
    if abs(imag(poles(k))) > 0
       %-------  First test to see if the pole is complex or not.
       num   = real(sqrt((1-abs(poles(k))^2)/(1-abs(poles(k-1))^2))*conv(num, [-poles(k-1),1]));
       den    = conv(den,[1,-poles(k)]);
       %------- If a pole is complex we have to include its conjugate automatically.
       den    = real(conv(den, [1,-poles(k)']));
       alpha = 2*real(poles(k))/(1+abs(poles(k))^2);

       if Aflag==0  %--FIR structure
          phi     = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(k))^2)), den, ze(:,2));             mPHI    = [mPHI, phi(:)];
          if vz,  phiv  = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(k))^2)), den, zv(:,2));    mPHIV = [mPHIV, phiv(:)];  end;
       else  %--ARX structure
          phi     = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(k))^2)),den,-ze(:,1));               mPHI   = [mPHI, phi(:)];
          if vz,  phiv  = dlsim(num*sqrt((1-alpha^2)*(1+abs(poles(k))^2)), den, -zv(:,1));   mPHIV = [mPHIV, phiv(:)];  end;
       end;
       gamma = polyval(num*sqrt((1-alpha^2)*(1+abs(poles(k))^2)),ww)./polyval(den,ww); GAMMA=[GAMMA, gamma(:)];

       if Aflag==0  %--FIR structure
          phi     = dlsim(sqrt(1+abs(poles(k))^2)*conv(num,[1,-alpha]), den, ze(:,2));            mPHI    = [mPHI, phi(:)];
          if vz,  phiv  = dlsim(sqrt(1+abs(poles(k))^2)*conv(num,[1,-alpha]), den, zv(:,2));   mPHIV = [mPHIV, phiv(:)]; end;
       else   %--ARX structure
          phi     = dlsim(sqrt(1+abs(poles(k))^2)*conv(num,[1,-alpha]), den, -ze(:,1));           mPHI     = [mPHI, phi(:)];
          if vz,  phiv  = dlsim(sqrt(1+abs(poles(k))^2)*conv(num,[1,-alpha]), den, -zv(:,1));  mPHIV  = [mPHIV, phiv(:)]; end;
       end
       gamma  = polyval(sqrt(1+abs(poles(k))^2)*conv(num, [1,-alpha]), ww)./polyval(den, ww);
       GAMMA = [GAMMA, gamma(:)];

       %------- Now put complex-conjugated pole automatically for the next iteration.
       num = conv(num,[-poles(k), 1]);

    else
       num = real(sqrt((1-abs(poles(k))^2)/(1-abs(poles(k-1))^2))*conv(num,[-poles(k-1)', 1]));
       den  = conv(den,[1, -poles(k)]);

       if Aflag==0  %--FIR structure
          phi     = dlsim(num,den,ze(:,2));            mPHI    = [mPHI, phi(:)];
          if vz,  phiv=dlsim(num,den,zv(:,2));      mPHIV = [mPHIV, phiv(:)];   end;
       else   %--ARX structure
          phi     = dlsim(num,den,-ze(:,1));           mPHI    = [mPHI, phi(:)];
          if vz,  phiv = dlsim(num,den,-zv(:,1));   mPHIV = [mPHIV, phiv(:)];   end;
       end;
       gamma = (polyval(num, ww)./polyval(den, ww)).*ww_NK;    GAMMA = [GAMMA, gamma(:)];
    end;
end


