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Per-survivor iterative timing recovery was proposed in [1] to jointly perform timing recovery, 
equalization, and error-correction decoding.  In this paper, we investigate the robustness of 
per-survivor iterative timing recovery against thermal asperity (TA) [2] and in ultra-high media 
noise environment in perpendicular recording channels.  The readback signal, p(t), in Fig. 1 can be 
written as  
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where ak ∈ {±1} is a binary input sequence with bit-period T and n(t) is AWGN with power σ2.  
The transition response is given by g(t) = erf( 16ln t/PW50) where erf(⋅) is an error function and 
PW50 is the width of the derivative of g(t) at half its maximum.  The media jitter noise, ∆tk, is 
modeled as a random shift in the “transition position” with a Gaussian probability distribution 
function with zero mean and variance |bk| 2

jσ  (i.e., ∆tk ~ Ɲ(0, |bk| 2
jσ )) truncated to T/2.  The clock 

jitter noise, τk, is modeled as a random walk, i.e., τk+1 = τk + Ɲ(0, 2
wσ ).  The readback signal is 

filtered by a seventh-order Butterworth low-pass filter and is sampled at time kT + kτ̂ , where kτ̂  is 
an estimate of τk.  The sampler output sk is then equalized to a predetermined target.  The sampling 
phase offset is updated by a second-order PLL according to kkkk θεαττ ˆˆˆˆ 1 ++=+ , where 

kkk εβθθ ˆˆˆ
1 += − , and α and β are PLL gain parameters.  In the conventional receiver, conventional 

timing recovery is followed by a turbo equalizer, which iteratively exchanges soft information 
between a soft-in soft-out (SISO) equalizer and an SISO decoder. 
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Figure 1.  System model. 

 
Results 
We consider a rate-8/9 coded system in which a block of 3640 message bits, {xk}, is encoded by a 
regular (3, 27) LDPC code, resulting in a coded block length of 4095 bits, {ak}.  The SISO 
equalizer is implemented based on a soft-output Viterbi algorithm, and the SISO decoder is 
implemented based on the message passing algorithm with 5 internal iterations.  To account for a 
coded system, we define a user density, Du, as Du = ND/code rate.  Also, we consider a 



perpendicular recording channel with σw/T = 0.5% clock jitter noise and 0.2% frequency offset.  
The SNR is defined as SNR = 10⋅log10(Ei/N0) in dB, where Ei is the energy of the channel impulse 
response (the derivative of the transition response scaled by 2).  The GPR target and a 21-tap 
equalizer are designed at SNR required to achieve BER = 10-5.   

First, we investigate the robustness of per-survivor iterative timing recovery in the 
presence of TA after applying the TA detection and correction algorithm [2].  The TA signal is 
generated according to [2] and is added to p(t) before low-pass filtering.  Fig. 2(a) compares the 
performance of different iterative timing recovery schemes at the 5-th iteration for Du = 2, σj/T = 
3% media jitter noise, and a 3-tap GPR target.  Clearly, per-survivor iterative timing recovery is 
more robust against TA than the conventional receiver.  This is because it can automatically 
correct a cycle slip, as opposed to the conventional receiver. 

Noise in magnetic recording channels is also data-dependent, whose severity depends on 
the data pattern written on the disk.  A pattern-dependent noise-predictive (PDNP) technique [3] 
has been proposed to combat with the data-dependent noise.  Hence, we apply the PDNP technique 
in PSP-SOVA [1], resulting in PSP-SOVA-PDNP.  This scheme has high complexity because it 
requires trellis expansion.  To reduce its complexity, we perform the PDNP technique in a 
per-survivor manner [1], resulting in PSP-SOVA-PDNP-MO, which requires no trellis expansion.  
Fig. 2(b) compares the performance of different iterative timing recovery schemes when they have 
same complexity for Du = 3, σj/T = 10%, and a 4-tap GPR target.  It can be shown that 1 iteration of 
per-survivor iterative timing recovery using PSP-SOVA-PDNP has the complexity approximately 
equal to 4 iterations of the conventional receiver, and 8 iterations of per-survivor iterative timing 
recovery using PSP-SOVA-PDNP-MO.  Apparently, per-survivor iterative timing recovery using 
PSP-SOVA-PDNP-MO performs better than other schemes. 

  
Figure 2.  Performance comparison. 
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