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Abstract— A conventional receiver performs timing recovery
and equalization separately. Specifically, conventional timing
recovery is based on a phase-locked loop that relies on the
decision provided by its own symbol detector. We propose a
new timing recovery scheme based on per-survivor processing
(PSP) that jointly performs timing recovery and equalization
for uncoded partial response channels. In the proposed scheme,
each survivor of the Viterbi algorithm maintains its own estimate
of the timing offset, and this estimate is updated according to
the history data associated with the survivor path. As compared
to conventional timing recovery at BER = 10−4, the proposed
scheme can provide a 0.5 dB gain in SNR.

I. INTRODUCTION

Timing recovery is the process of synchronizing the sampler
with the received analog signal. The quality of synchronization
has a dominant impact on overall performance.

Theoretically, joint maximum-likelihood (ML) estimation of
the timing offset and the data sequence is a preferred method
of synchronization [1] but its complexity is prohibitive. A
solution based on the extended Kalman filters [2] is also
complex. In practice, a conventional receiver performs timing
recovery and ML equalization separately, as shown in Fig. 1.
Specifically, conventional timing recovery is based on a phase-
locked loop (PLL) [3] that relies on the decision provided by
a symbol detector, which can be either a Viterbi detector [4]
with a short decision delay or a memoryless multi-level slicer.
However, the former has a fundamental trade-off between the
reliability and the decision delay, whereas the latter might yield
an unreliable decision.

To overcome this drawback, a reliable decision with zero
decision delay can be extracted by utilizing the already-given
information inside the trellis structure [4]. Specifically, each
state transition in the trellis uniquely specifies a corresponding
symbol. Then, at least one state transition in each trellis stage
will correspond to the correct decision. Utilizing that decision
for the timing update operation will improve the performance
of timing recovery. The idea of using the information available
in the trellis to estimate other unknown parameters is known as
per-survivor processing (PSP) [5]. PSP has been employed in
many applications, including channel identification, adaptive
ML sequence detector, and phase/carrier recovery [5]-[6].

The PSP-based timing recovery scheme was developed
in [7] for achieving fast convergence in magnetic recording
channels. Since the channel model used in [7] is complex, it is
hard to fully explore its architecture. In this paper, we instead

focus on a simple channel model, namely a perfectly equalized
partial response (PR) channel model. Then, we investigate the
PSP-based timing recovery scheme in detail and compare its
performance with conventional schemes.

This paper is organized as follows. Section II describes our
channel model and explains how conventional timing recovery
works. The PSP-based timing recovery scheme is described in
Section III, and its performance is compared with conventional
timing recovery in Section IV. Finally, Section V concludes
this paper.

II. CHANNEL DESCRIPTION

We consider the perfectly equalized PR-IV channel model
shown in Fig. 1, where the readback signal can be written as

s(t) =
L−1∑
k=0

akh(t − kT − τk) + n(t), (1)

where ak ∈ {±1} is an input data sequence of length L
with bit period T , h(t) = p(t) − p(t − 2T ) is a PR-IV
pulse, p(t) = sin(πt/T )/(πt/T ) is an ideal zero-excess-
bandwidth Nyquist pulse, and n(t) is additive white Gaussian
noise (AWGN) with two-sided power spectral density N0/2.
The timing offset, τk, is modeled as a random walk model
according to τk+1 = τk + N (0, σ2

w), where σw determines
the severity of the timing offset. The random walk model
is chosen because of its simplicity to represent a variety of
channels by changing only one parameter. We also assume
perfect acquisition by setting τ0 = 0.

At the receiver, the readback signal s(t) is filtered by a low-
pass filter, whose impulse response is p(t)/T , to eliminate the
out-of-band noise, and sampled at time kT + τ̂k, creating

yk = y(kT + τ̂k) =
∑

i

aih(kT + τ̂k − iT − τi) + nk, (2)

where τ̂k is the receiver’s estimate of τk, and nk is i.i.d. zero-
mean Gaussian random variable with variance σ2

n = N0/(2T ).
Conventional timing recovery is based on a PLL, which

consists of a timing-error detector (TED), a loop filter, and a
voltage-controlled oscillator (VCO), as depicted in Fig. 1. A
decision-directed TED [3] computes the receiver’s estimate of
the timing error εk = τk − τ̂k using the well-known Mueller
and Müller (M&M) TED algorithm [8] according to

ε̂k =
3T

16
{ykr̂k−1 − yk−1r̂k} , (3)
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Fig. 1. The perfectly equalized PR-IV channel model with timing recovery.

where r̂k is the k-th estimate of the noiseless channel output
rk ∈ {0,±2}. The constant 3T/16 assures that there is no
bias at high signal-to-noise ratio (SNR) so that E[ε̂k] = εk.
Because perfect acquisition is assumed and our model has no
frequency offset component, the sampling phase offset is then
updated by a first-order PLL according to

τ̂k+1 = τ̂k + αε̂k, (4)

where α is a PLL gain parameter [3]. Eventually, the Viterbi
detector performs ML equalization to determine the most
likely input data sequence.

It is apparent from Fig. 1 that the total delay in the timing
loop results from the decision delay, d, introduced by the
symbol detector. The instantaneous hard decision (i.e., d =
0) can be extracted by a simple ternary symbol-by-symbol
decision with threshold at ±1, i.e.,

r̂k =




2 if yk > 1
−2 if yk < −1

0 otherwise
, (5)

but it might be very unreliable. An improved decision can be
obtained from the Viterbi detector with a (short) decision delay
of d. This is done by choosing the best survivor path at each
time instant, and then the tentative decision, r̂k−d, is found
by moving d steps backward along that survivor path. Clearly,
there is a trade-off between the reliability and the decision
delay since reliability can be improved by increasing the
decision delay. However, a large delay is undesirable because
it slows the PLL’s response to time-varying timing offsets.

Another solution to obtain a good decision with zero de-
cision delay is to utilize the PSP technique, which will be
discussed in the next section.

III. PSP-BASED TIMING RECOVERY

PSP was first applied to the application of reduced-state se-
quence estimation [9]. The general PSP concept and its various
applications were later introduced in [5]. PSP is a technique for
jointly estimating the data sequence and unknown parameters,
such as the channel coefficients, the carrier phase, and so forth.
Note that the PSP concept is quite general because it results
in different solutions for a given application. In this paper, we
apply PSP to develop a new timing recovery scheme called

(A-1) Initialize Φ0(p) = 0 for ∀p

*(A-2) Initialize τ̂0(p) = 0 for ∀p

(A-3) For k = 0, 1, . . . , L + ν − 1

(A-4) For q = 0, 1, . . . , Q − 1

*(A-5) yk(p) = y(kT + τ̂k(p)) for ∀p

(A-6) ρk(p, q) = |yk(p) − r̂(p, q)|2 for ∀p

(A-7) πk+1(q) = arg minp{Φk(p) + ρk(p, q)}
(A-8) Φk+1(q) = Φk(πk+1(q)) + ρk(πk+1(q), q)

(A-9) Sk+1(q) = [Sk(πk+1(q)) | πk+1(q) ]

*(A-10) τ̂k+1(q) = τ̂k(πk+1(q))

+α 3T
16

{yk(πk+1(q))r̂(πk(πk+1(q)), πk+1(q))

− yk−1(πk(πk+1(q)))r̂(πk+1(q), q)}
(A-11) End

(A-12) End

(A-13) Extract â from the survivor path that minimizes ΦL+ν

Fig. 2. PSP-MM algorithm, where the lines beginning with * are the
additional steps beyond the conventional Viterbi algorithm.

PSP-based timing recovery, which jointly performs timing
recovery and ML equalization, as shown in Fig. 1.

PSP-based timing recovery works in a similar fashion as the
Viterbi algorithm does, except with an additional timing update
operation. The key idea of PSP-based timing recovery is to
sample the received analog signal using different sampling
phase offsets associated with each state transition. Addition-
ally, each survivor path has its own PLL to update the sampling
phase offset. For simplicity, we first restrict ourselves to the
M&M TED algorithm when performing the timing update
operation. As a result, we shall refer to the PSP-based timing
recovery scheme with the M&M TED as “PSP-MM.”

A. PSP-MM Algorithm

Fig. 2 shows the PSP-MM algorithm, where the lines begin-
ning with * are the additional steps beyond the conventional
Viterbi algorithm. The PSP-MM algorithm is explained below.

Consider the PR-IV trellis structure in Fig. 3. Let Ψk =
{ak−1 ak−2} denote the state at time k (or the k-th stage).
There are Q = 2ν = 4 states in this trellis labeled as state 0
to state 3, where ν is the PR-IV channel memory. Let (p, q) be
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Fig. 3. The PR-IV trellis structure explaining how PSP-MM performs.

the state transition from state p to state q, and πk(p) denote a
predecessor for state p at time k, defined as the starting state
associated with the best state transition. We define τ̂k(p) as the
k-th sampling phase offset for state p at time k, which is used
to sample y(t) at time k for the state transitions emanating
from state p at time k, e.g., yk(p) = y(kT + τ̂k(p)), where
yk(p) is the k-th sampler output for state p at time k.

Consider the k-stage of the trellis. There are two state
transitions arriving at state 2 at time k + 1, i.e., (1, 2) and
(3, 2). We first sample y(t) using τ̂k(1) and τ̂k(3) to obtain
yk(1) and yk(3), respectively. Next, we compute two branch
metrics ρk(1, 2) and ρk(3, 2) according to (A-6), where r̂(p, q)
is the channel output associated with (p, q). Then, the starting
state associated with the best state transition leading to state
2 at time k + 1 is chosen according to (A-7).

Suppose (1, 2) is the best state transition leading to state 2 at
time k +1 so that πk+1(2) = 1. The path metric for state 2 at
time k+1, Φk+1(2), is updated by (A-8), and the survivor path
for state 2 at time k+1, Sk+1(2), is extended according to (A-
9). Then, the next sampling phase offset, τ̂k+1(2), is updated
based on (A-10) using the information from Sk+1(2). This
τ̂k+1(2) will be used to sample y(t) at time k+1 for the state
transitions emanating from state 2 at time k + 1. We follow
these steps according to the Viterbi algorithm for an entire
received signal. Finally, the decision is made by choosing the
survivor path that has the minimum path metric.

Beyond the conventional Viterbi algorithm, PSP-MM needs
new storage requirement for: 1) the sampling phase offsets
and 2) the sampler outputs. However, only sampling phase
offsets and sampler outputs of the current and previous stages
are needed to be stored, thus minimizing extra memory.
Furthermore, it is clear that PSP-MM requires one PLL for
each survivor path. Thus, for a PR-IV channel, the complexity
of timing recovery is four times the complexity of conventional
timing recovery.

B. New Timing Error Detector

The PSP-MM described above does not exploit the future
information available in the trellis, i.e., the channel output

at the next time instant. Consider the case where we are at
state 2 at time k + 1, we would know exactly that there will
be two state transitions emanating from this state, i.e., (2, 0)
and (2, 1). Since these two future channel outputs, r̂(2, 0) and
r̂(2, 1), are available at time k, it might be a good idea to
incorporate them for the timing update operation at time k.

To do so, we need to develop a TED algorithm that is able to
use future information. One such TED algorithm can be found
by minimizing the log-likelihood function of the samples {yk}
[1] according to

L(y|r̂, ε) =
∑
m

∣∣∣∣∣ym −
∑

n

r̂np((m − n)T − τ + τ̂)

∣∣∣∣∣
2

= K −
∑
m

ym

∑
n

r̂np((m − n)T − τ + τ̂),(6)

where K is a constant independent of τ̂ , ym = y(mT + τ̂), τ
is the actual timing offset, and τ̂ is an estimate of τ .

Since we are concerned with an error feedback algorithm,
only τ̂ close to τ is of interest. Thus, the timing error signal
can be obtained by differentiating (6) with respect to τ̂ , i.e.,

∂L(y|r̂, ε)
∂τ̂

= −
∑
m

ym

∑
n

r̂nṗ((m − n)T ), (7)

where ṗ(kT ) is the derivative of p(t) evaluated at time kT ,
which can be expressed as

ṗ(kT ) =
{

0 k = 0
1

kT (−1)k otherwise . (8)

With a symmetric property, the estimated timing error at
time k for four observations can be written as

ε̂k = −180T

3086

k+1∑
m=k−2

ym

k+1∑
n=k−2

r̂nṗ((m − n)T )

=
180T

3086
{yk+1(r̂k − 0.5r̂k−1 + r̂k−2/3)

+ yk(−r̂k+1 + r̂k−1 − 0.5r̂k−2)
+ yk−1(0.5r̂k+1 − r̂k + r̂k−2)
+ yk−2(−r̂k+1/3 + 0.5r̂k − r̂k−1)} , (9)

where we use yk+1 = y(kT + T + τ̂k) assuming that the
timing offset is slowly varying. The constant 180T/3086 is
introduced to ensure that there is no bias at high SNR so that
E[ε̂k] = εk. We shall refer to this TED as “4S-TED,” where
“4S” stands for the samples taken from time k − 2 to k + 1
that are used to compute ε̂k. Note that when using the samples
only at time k − 1 and k, (9) reduces to the M&M TED (by
ignoring the constant term of both TEDs).

It is worth exploring the characteristics of both TEDs, which
can be determined by the timing function [3], defined as the
mean of ε̂k assuming that all decisions are correct and the input
data symbols are uncorrelated with unit energy. For a PR-IV
channel, the timing function of the M&M TED is given by

E[ε̂k|r̂k−1 = rk−1, r̂k = rk]

=
3T

16
{−h(−T − ε) + 2h(T − ε) − h(3T − ε)} ,(10)



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalized timing error (ε/T)

M&M TED
4S−TED

Standard deviation 

Mean 

Normalized timing function 

Fig. 4. The mean and the standard deviation of different TEDs for a PR-IV
channel at SNR = 10 dB.

whereas that of the 4S-TED can be expressed as

E[ε̂k|r̂k−2 = rk−2, r̂k−1 = rk−1, r̂k = rk, r̂k+1 = rk+1]

=
180T

3086
{−h(−ε) + 6h(T − ε) − h(2T − ε)

−h(−3T − ε)/3 + h(−2T − ε) − 8h(−T − ε)/3
− 8h(3T − ε)/3 + h(4T − ε) − h(5T − ε)/3} . (11)

The mean and the standard deviation of {ε̂k} given in (3)
and (9) based on instantaneous decisions as a function of the
normalized timing error ε/T at a per-bit SNR, Eb/N0, of 10
dB are plotted in Fig. 4, assuming that we have access to the
correct future information. Clearly, both timing functions are
odd symmetric with respect to ε = 0. Thus, regardless of the
TED used, the sampling phase offset updated according to (4)
will settle down in the steady state at ε = 0. Observe that the
mean of both TEDs is approximately proportional to ε/T over
a range of ±20% about the origin. As expected, the standard
deviation of the 4S-TED is lower than that of the M&M TED
because more information is used in evaluating the estimated
timing error. Therefore, the 4S-TED is more robust to the noise
in the timing error signal than the M&M TED.

From this point on, we shall denote the PSP-based timing
recovery scheme with the 4S-TED as “PSP-4S.” Unlike PSP-
MM, for a PR-IV channel, the complexity of timing recovery
is eight times that of conventional timing recovery because
PSP-4S requires one PLL for each state transition in one stage
of the trellis.

C. Note on Conventional Timing Recovery

We can also explain how conventional timing recovery
works in the context of the trellis structure. This will show
that it is in fact a special case of PSP-MM.

Practically, conventional timing recovery employs the same
sampling phase offset τ̂k to sample y(t) for all state transitions
at time k. Then, the same decision (either the hard decision
r̂k or the tentative decision r̂k−d found by tracing back d
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Fig. 5. Performance comparison of PSP-based timing recovery as a function
of SNRs.

steps along the best survivor path chosen at time k) is used
to compute the estimated timing error ε̂k for all states, which
finally results in the same τ̂k+1 for all states after updating it.

Therefore, PSP-based timing recovery differs from conven-
tional timing recovery in the sense that: 1) it uses different
sampling phase offsets associated with each state transition
to sample y(t); and 2) it employs the instantaneous decision
with zero decision delay associated with each state transition
to compute the estimated timing error.

IV. NUMERICAL RESULTS

In simulation, unless otherwise specified, we consider
σw/T = 0.5% and employ the PLL gain parameter, α,
designed to recover phase change within 100 symbols based
on a linearized model of PLL [3], assuming that the slope of
the timing function is one at origin and there is no noise in
the system. The α’s designed for the delays of 0, 4T, 8T and
20T are 0.030, 0.027, 0.025 and 0.019, respectively.

We first explore how the decision delay affects the perfor-
mance of timing recovery. In doing so, we consider the PSP-
MM scheme where we have access to all decisions {r̂k−d}
(at any d steps earlier) associated with each survivor path.
Fig. 5 compares the performance of different PSP-MMs, where
the RMS timing error σε =

√
E[(τk − τ̂k)2] is plotted as a

function of SNRs. Apparently, PSP-MM with d = 0 yields
the best performance. This can be confirmed by plotting σε/T
performance as a function of α’s at SNR = 8 dB in Fig. 6.
Again, PSP-MM with d = 0 is better than that with d �= 0 for
all α’s. Results imply that the decision delay has a tremendous
impact on overall performance. Therefore, it is desirable to use
the decision with zero decision delay whenever possible.

Figs. 5 and 6 also show the performance of the PSP-4S
with d = 0. In Fig. 5, PSP-4S performs better than PSP-MM
at low SNRs. This is because the future information used in
PSP-4S helps improve the performance of timing recovery,
especially when the uncertainty is high. Fig. 6 indicates that



0.006 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
3

3.5

4

4.5

5

5.5

6

PLL gain parameter (α)

R
M

S
 ti

m
in

g 
er

ro
r 

 σ
ε/T

 (
%

)

PSP−MM (d = 0)
PSP−MM (d = 4)
PSP−MM (d = 8)
PSP−MM (d = 20)
PSP−4S (d = 0)

Fig. 6. Performance comparison of PSP-based timing recovery as a function
of α’s at SNR = 8 dB.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

S
N

R
 r

eq
ui

re
d 

to
 a

ch
ie

ve
 B

E
R

 =
 1

0−
4  (

in
 d

B
)

σ
w
/T (%)

Conventional timing recovery with hard decision (d = 0)
Conventional timing recovery with tentative decision (d = 4)
PSP−MM (d = 0)
Trained PLL (d = 0)

Fig. 7. Performance comparison of different timing recovery schemes.

PSP-4S yields slightly lower σε/T performance than PSP-MM
for small α. However, it starts performing worse than PSP-MM
when α is large. Since PSP-4S provides only small gain over
PSP-MM and the complexity of PSP-4S is much higher than
that of PSP-MM, PSP-MM is then preferred. From this point
on, we shall consider only the PSP-MM with d = 0 when
comparing with conventional timing recovery.

Finally, we compare PSP-MM with conventional timing
recovery by plotting SNR requirement for bit-error rate (BER)
of 10−4 as a function of σw/T ’s in Fig. 7. The curve labeled
“Trained PLL” is conventional timing recovery whose PLL
has access to all correct decisions, thus serving as a lower
bound for all timing recovery schemes that are based on PLL.
Obviously, PSP-MM performs better than conventional timing
recovery, especially when σw/T is large. As shown in Fig. 7,
PSP-MM is 0.5 dB better than conventional timing recovery
when operating in the system with σw/T = 1%. Although

conventional timing recovery with hard decision seems to
perform comparably to that with tentative decision, this is
not true when the channel is complex, e.g., the channel with
large channel memories or with arbitrary coefficients. That is
why conventional timing recovery practically uses the tentative
decision provided by the Viterbi detector in most applications.

The reason that PSP-MM performs better than conventional
timing recovery can be intuitively explained as follows. At
each time instant, at least one state transition in each trellis
stage will correspond to the correct decision. Using that
decision to perform the timing update operation will then
improve the performance of timing recovery. In other words,
PLL is fully trained if a correct path is chosen. Following
this idea for an entire received signal, the overall system
performance will be improved.

V. CONCLUSION

We proposed the PSP-based timing recovery scheme to
jointly perform timing recovery and ML equalization for
uncoded partial response channels.

It is apparent that the delay in the timing loop affects overall
performance. That is why PSP-MM with d = 0 performs
better than that with d �= 0. Therefore, PSP-based timing
recovery has the advantage of reducing the delay in the timing
loop. Since PSP-4S provides only a small gain over PSP-
MM, PSP-MM is then more desirable than PSP-4S because
it has less complexity. Finally, we have shown that PSP-MM
yields better performance than conventional timing recovery,
especially when the timing error is large. Specifically, PSP-
MM provides a 0.5 dB gain over conventional timing recovery
when σw/T = 1%.

As the complexity of PSP-based timing recovery is high,
all advantages obtained from PSP-based timing recovery must
be balanced against the increased implementation cost.
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