Fundamental of HDD Technology (8)

Assistant Prof. Piya Kovintavewat, Ph.D. Data Storage Technology Research Unit Nakhon Pathom Rajabhat University

E-mail: piya@npru.ac.th URL: http://home.npru.ac.th/piya SCILAB: http://home.npru.ac.th/piya/webscilab

Outline

- Magnetic Recording Channel Model
- Write Process

Assist.Prof.Piya Kovintavewat Ph.D.

Magnetic Recording Channel Model

Diagram of Data Storage Systems

1

Assist.Prof.Piya Kovintavewat, Ph.D.

Basic Write/Read Process

8

MAGMETIC HEAD

s

g = gap size

v = surface velocity

Media

d = head-to-medium spacing

 δ = recording layer thickness

Input current

Output voltage

mmf = Ni

lg : Magnetic field

Reading or Reproducing

Write Process

- ECC Encoder
- Modulation Encoder
- Precoder

Assist.Prof.Piya Kovintavewat,

Ph.D.

- Nonlinear Transition Shift
- Write Precompensation

Write Process

Notation:

Ph.D.

ECC = Error-correction code

Write precomp = Write precompensation

Error-Correction Code (ECC)

Improve error-rate performance

 Enhance reliability of the storage devices, thus increasing the recording densities.

9

- Single bit error Typically, magnetic recording systems must provide a biterror rate (BER) < 10-9. Occur due to a single short-duration noise event, which results in an The reliability of data recovery may be greatly boosted by extra pulse or a missing pulse using ECC's. Once a certain number of errors are corrected by ECC, we can afford to increase the recording densities until reaching a required BER. Bursts of errors Thus, the storage capacity with ECC trends to be larger than Occur when a group of bits is that without FCC detected erroneously Due to defects of magnetic medium such as a scratch or a defective spot spanning over many bit periods Assist Prof. Piva Kovintavewat Assist Prof.Piva Kovintavewat Ph.D. 13 Ph.D. 14 Example – ECC If the error rate is determined by random noise, Possible to calculate the signal-to-noise ratio (SNR), required to Consider: achieve a specific BER. A simple ECC capable of correcting a single error in a group of 16 bits, Example: which requires the overhead of 8 bits for every 16-bit block. □ An error will occur only if 2 or more bits out of 16 bits are in error. □ To achieve BER = 10^{-9} without ECC \Rightarrow Require SNR = 22 dB • If the probability of a single-bit error is p_0 , then the probability □ To achieve BER \approx 3*10⁻⁶ (with ECC) \Rightarrow Require SNR = 19 dB of 2 bits being in error equals p_0^2 , and we have a total of 120 Yield a gain of 3 dB to spare possible 2-bit errors in a 16-bit sequence. The reduction in the SNR required to achieve a specified error
 - Then, the probability of error using ECC is

$$P_b \approx {\binom{16}{2}} p_0^2 (1-p_0)^{14} = 120 p_0^2 (1-p_0)^{14}$$

Let $P_b = 10^{-9} \implies p_0 \approx 3*10^{-6}$

Assist.Prof.Piya Kovintavewat, Ph.D.

performance due to ECC is called the coding gain.

The coding gain in SNR allows increased recording densities.

- For example, if the main source of noise is the medium noise,
 - □ A reduction of track width by a factor of 2 ⇒ Lose SNR = 3 dB [S. X. Wang and A. M.Taratorin, 1999]
- Therefore, using ECC need 50% more disk space for extra bits, but the coding gain of 3 dB allows us to recording 100% more information by doubling track density.
 - $\hfill\square$ The net gain from ECC is 50% more storage capacity
- In general, using ECC will increase the storage capacity.

ECC – Reed Solomon (RS) Codes

- Reed-Solomon (RS) codes are a common family of ECCs used in commercial hard disk drive because:
 - Powerful in correcting burst errors
 - Good at handling erasures \Rightarrow useful in the recording industry where channel imperfection due to scratches can be effectively modeled as erasures.
- A RS code is the most efficient code among the (n, k) cyclic codes because it achieves the largest possible minimum distance:

Assist.Prof.Piya Kovintavewat Ph.D.

A (n, k) RS code:

Assist Prof. Piva Kovintavewat

Ph.D.

- $\hfill\square$ Can detect any burst of errors having a burst length of (n-k)
- $\hfill\square$ Can correct any burst of errors having a burst length of (n-k)/2
- Example: a (31, 15) RS code
 - Can detect a burst of 16-bit error
 - Can correct a burst of 8-bit error

ECC Trend

• ECCs are basically independent of a bit detector.

Trend:

- Combine the ECC decoder and the bit detector.
- Employ other ECCs that have large coding gains because they allow for higher recording densities.
 - Turbo codes
 - Low-density parity check (LDPC) codes

17

Example: Turbo Decoding

Run-Length Limited (RLL) Code

- It has a restriction on the number of consecutive 1's and 0's in a data sequence.
- It is determined by two parameters (d, k), where
 - \Box denotes the minimum number of 0's between two 1's in a sequence.
 - \square k denotes the maximum number of 0's between two 1's in a sequence.
- Specifically, (when used with NRZI format)
 - \Box *d* \Rightarrow Spread the transitions farther apart, thus reducing the ISI effect.
 - $k \Rightarrow$ Ensure that the transitions occur frequently enough so that symbol timing information can be recovered from the signal.

Modulation Code

- Normally, it is used to combat channel distortion and noise in transmission.
- In magnetic recording, it is used to eliminate or minimize the d.c. content in the read-back signal and to achieve spectrum shaping*.
- Specifically, it is designed to increase the distance between transitions in the recorded waveform, and thus reducing the intersymbol interference (ISI) effect.
- Run-length limited (RLL) codes are widely used for this purpose.

Example: Rate-1/2 (1, 3) Miller Code

Coding rule:

User bits	Coded bits							
0		X 0		1 :	x =	0 if	the precedin	g symbol is 1
1		0 1			ĺ	1 els	se	
				-				
User bits = { 1	0	1	1	1	0	0	1 }	

^{*} Codes for spectrum shaping are used so that the spectrum of the transmitted signal matches the spectrum characteristics of the channel.

Assist.Prof.Piya Kovintavewat Ph.D.

- The price for RLL coding appears in a data rate change.
 - u # output bits > # input bits
 - In other words, RLL coding introduces lots of redundant bits
- From the previous example, we found that:
 - □ Rate-1/2 (1, 3) RLL code \Rightarrow (*d* = 1, *k* = 3)
 - $\hfill\square$ 1 user bit is mapped into 2 coded bits \Rightarrow lose 50% of disk space

Example: 2/3 (1, 7) RLL Code

Coding Table				
User bits	Encoded bits			
00	101			
01	100			
10	001			
11	010			
0000	101000			
0001	100000			
1000	001000			
1001	010000			

Assist.Prof.Piya	Kovintavewat
Ph D	

Example: 1/2 (1, 7) RLL Code

Coding Table

User bits	Encoded bits
10	0100
11	1000
000	000100
010	100100
011	001000
0010	00100100
011	00001000

Which RLL Code is Good?

- Factors needed to be considered when choosing RLL codes:
 - \Box Parameters: *d* and *k*
 - \Box Code rate, *R*
 - \Box Capacity, C
 - \Box Code efficiency, η
 - Density ratio, DR
- In practice, we need to compromise all factors to best suit for a given system.
- · Some RLL codes:
 - **a** Rate 1/2 (2, 7) code
 - □ Rate 4/5 (0, 2) code \Rightarrow Group-Coded Recording (GCR) code
 - **\Box** Rate 8/9 (0, 3) code

Assist.Prof.Piya Kovintavewat,

Ph.D.

25

A (0, G/I) RLL Code

- Widely used in PRML systems
- No constraint on transition separation, i.e., two transitions may be written without additional zeros between them (i.e., d = 0)
- The notation (G/I) appears because of the specific realization of PRML channel when a stream of user bits is split into odd and even bits.
 - □ G = maximum # of 0's between 1's in odd data sequence
 - □ I = maximum # of 0's between 1's in even data sequence

Summary: RLL Codes

- Error propagation might occur when decoding RLL codes.
- Recently, a (0, G/I) sequence is employed in the PRML system.

Example:

- Rate 8/9 (0, 4/4) code
- Rate 16/17 (0, 6/6) code
- High rate RLL codes are desirable in order to reduce redundancy.

Assist.Prof.Piya Kovintavewat Ph.D.	29	Assist Prof Piya Kovintavewat, Ph.D.
• Data bits a	OCCESS Write signal Write Medium Write Transition bits (NRZI format): {0 1 1 0 0 0 1 1 1 0 0 1 1 0} Write current Write transition bits (NRZI format): transition bits (NRZI format	 Commercial digital recording systems normally employ binary saturation recording (i.e., only two data levels). If more than two data levels were recorded: Nonlinearity would cause a major problem Signal-to-disturbance ratios would diminish considerably

- Data bits are converted into a rectangular current waveform by the modulator.
- This write current is applied to the write head to produce the magnetic write field in the medium near the head gap.
- By switching the direction of the write current, magnetization transitions can be written in the medium.

Perpendicular recording \Rightarrow medium magnetization is perpendicular to . the disk plane

Assist Prof Pina Kovintanewat		
Ph.D.		

- · Longitudinal writer can supply field with longitudinal component more than perpendicular
- component \Rightarrow Not effective for perpendicular recording
- Single pole tip writer is design specifically to produce very high perpendicular field component approximately 3-4 times more field strength than longitudinal writer.

35

33

Media Soft Underlayer

- · Adding soft magnetic underlayer is like adding a virtual "mirror"
- A perfect mirror image can improve field strength from writer by 200%
 - Enable media to has higher switching field
- Media grain volume also effectively increases by 200%
 - Higher robustness against data loss

Assist.Prof.Piva Kovintavewat, Ph D

Magnetizations and Fields

Writing & Reading of LMR vs. PMR

Data Format

□ Non-return-to-zero-interleaved (NRZI): "1" \Rightarrow transition

" 0 " \Rightarrow no transition

NRZI & NRZ Relationship

Assist.Prof.Piva Kovintavewat, Ph.D.

NRZ:

Summary: NRZI & NRZ

- In the NRZ scheme:
 - "1" means one direction of medium magnetization,
 - "0" means opposite direction of medium magnetization.
- In the NRZI scheme:
 - "1" means transition
 - "0" means no transition

Assist.Prof.Piya Kovintavewat, Ph.D.

Precoder

- A portion of the equalization task can be shifted to the transmitter by precoding the data symbols at the transmitter.
- The data symbols are precoded and then are written onto the medium.
- This has the effect of increasing a minimum Euclidean distance, d_{min}, of a data sequence, resulting in lower biterror rate performance.

Advantage:

- With knowledge of the channel characteristics, the precoder can be chosen to partly
 - Undo the channel distortion
 - Reducing the equalization burden at the receiver
- Precoder help prevent catastrophic error propagation.
- A widely used precoder in commercial HDD is

$$P(D) = \frac{1}{1 \oplus D^2}$$

Assist.Prof.Piya Kovintavewat, Ph.D.

 Regions across the track become partially erased and the amplitude loss results from an effective trackwidth narrowing.

Nonlinearity in Write Process

- Refer to a phenomenon that causes linear superposition to be invalid.
 - The readback signal can be represented by the linear combination of the transition pulses according to the pulse amplitude modulation (PAM) technique.
- Included:
 - Partial erasure
 - Hard transition shift
 - Overwrite
 - Nonlinear transition shift

Assist.Prof.Piya Kovintavewat, Ph.D.

Nonlinearity – Hard Transition Shift

- In magnetic recording, the erasure of old information is accomplished by directly writing new data pattern over old data pattern.
- An easy transition is written if the head field is in the direction of the incoming magnetization
- A hard transition ⇒ when the head field is opposing the incoming magnetization
 - More difficult to write because it requires more head field to saturate the magnetization under the head gap
 - A hard transition always gets shifted later than desired in the absence of other nonlinear effects

For typical magnetic recording system, OW < -30 dB

Nonlinearity – Overwrite

- The erasure of old information is accomplished by directly writing new data pattern over old data pattern.
- The write field must be sufficient to reduce any residual original information to levels low enough not to cause errors while reading the new data.

Assist.Prof.Piya Kovintavewat Ph.D.

Nonlinearity – Nonlinear Transition Shift (NLTS)

- Occur due to the demagnetizing field from previous written transitions.
- Since opposite charges attract each other, the two magnetic transitions (dibit) must be shifted closer.
- NLTS always causes the transition to be written earlier than desired.
 - Data dependent
 - Degrade the SNR of the channel
 - Serious problem at high recording densities

- Use write precompensation to combat with NLTS
 - Intentionally delay switching the write current so that the resulting transition center is in the desired location
- PRML detection is capable of handling large amounts of linear ISI, but it is based on the assumption that the recording channel is linear.
 - Even moderate amounts of NLTS can cause high error rates in PRML system
- NLTS cannot be eliminated but can be reduced to achieve better linearity of the recording channel by using write precompensation.

NLTS in Longitudinal Recording

54

Assist.Prof.Piya Kovintavewat Ph.D.

Write Precompensation

- Used to combat with NLTS.
- Adjust the transition delay of the write current by taking into account of neighboring write bits.
- Techniques to determine amount of precompensation and bit patterns:
 - Extracted pulse shape
 - Frequency-domain technique
- High recording densities require a high-order write precompensation because the impact of older transitions becomes significant.

Assist.Prof.Piya Kovintavewat,

Ph.D.